
Explicit Authentication Response Considered Harmful∗

Lianying Zhao and Mohammad Mannan
Concordia Institute for Information Systems Engineering

Concordia University, Montreal, Canada
{z_lianyi, mmannan}@encs.concordia.ca

ABSTRACT
Automated online password guessing attacks are facilitated
by the fact that most user authentication techniques provide
a yes/no answer as the result of an authentication attempt.
These attacks are somewhat restricted by Automated Tur-
ing Tests (ATTs, e.g., captcha challenges) that attempt to
mandate human assistance. ATTs are not very difficult for
legitimate users, but always pose an inconvenience. Several
current ATT implementations are also found to be vulnera-
ble to improved image processing algorithms. ATTs can be
made more complex for automated software, but that is lim-
ited by the trade-off between user-friendliness and effective-
ness of ATTs. As attackers gain control of large-scale bot-
nets, relay the challenge to legitimate users at compromised
websites, or even have ready access to cheap, sweat-shop
human solvers for defeating ATTs, online guessing attacks
are becoming a greater security risk. Using deception tech-
niques (as in honeypots), we propose the user-verifiable au-
thentication scheme (Uvauth) that tolerates, instead of de-
tecting or counteracting, guessing attacks. Uvauth provides
access to all authentication attempts; the correct password
enables access to a legitimate session with valid user data,
and all incorrect passwords lead to fake sessions. Legitimate
users are expected to learn the authentication outcome im-
plicitly from the presented user data, and are relieved from
answering ATTs; the authentication result never leaves the
server and thus remains (directly) inaccessible to attackers.
In addition, we suggest using adapted distorted images and
pre-registered images/text as a complement to convey an
authentication response, especially for accounts that do not
host much personal data.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication, Unau-
thorized access (e.g., hacking, phreaking)

∗Post-proceedings version: October 26, 2013

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NSPW’13,September 9–12, 2013, Banff, AB, Canada.
Copyright 2013 ACM 978-1-4503-2582-0/13/09 ...$15.00.
http://dx.doi.org/10.1145/2535813.2535822.

General Terms
Security, Human Factors

Keywords
Authentication, Online password guessing, Deception

1. INTRODUCTION
Automated online password guessing is a long-standing

problem for password-based authentication. Nowadays, this
problem is possibly getting worse for reasons including the
following. (a) The growth of underground market for stolen
credentials; i.e., attackers can turn stolen passwords into
tangible profits; see e.g., Holz et al. [21]. (b) The value of
user accounts increases over time, e.g., long-standing Face-
book profiles, Gmail accounts, highly-reputed Paypal ac-
counts. In many cases, user accounts are not as readily
replaceable as in the past—i.e., create a new account if the
old one is compromised. (c) User chosen passwords are not
getting better in terms of complexity. New services requiring
passwords are emerging, causing password fatigue or sharing
across sites. Also, the increasing number of online partic-
ipants (e.g., see [22]) makes the use of common passwords
more possible. (d) Attackers are getting more organized
than before, and have access to better tools and crackers;
for example, they now maintain more robust botnets, and
can use better techniques than just brute-forcing, e.g., opti-
mized dictionary attacks [29].

Common countermeasures include: rate-limiting the num-
ber of allowed login attempts in a given period of time;
the use of captchas to restrict automated attacks, see e.g.,
Pinkas and Sander [38]; and triggering a two-step authen-
tication, e.g., one-time PIN sent to a pre-registered mobile
phone, and personal challenge questions. In most cases, at-
tackers can bypass the countermeasures, at least to a limited
extent. For example, assuming a three-strike account lock-
ing technique is used, an attacker can still employ a large
botnet (e.g., million-node) to test the most common pass-
words and possibly compromise some accounts; here, the
attacker is successful if her goal is to access a few accounts
(e.g., to use as intermediate money-transfer accounts), in-
stead of compromising a targeted account. Captchas are
mostly detested by human users as they are becoming in-
creasingly difficult to decipher (see e.g., [8]); as a side-effect,
login times also increase as legitimate users sometimes need
to try more than one captcha for an exact match. Sev-
eral real-world captcha schemes have been defeated by im-
proved image recognition algorithms (see e.g., [9]). As a

result, service providers often leave with no option but to
deploy more complex captchas. These limitations are known
and several proposals in the past attempted to address the
security-usability trade-off in captcha schemes (e.g., [38, 1]).

The fundamental problem here, as we see is that the at-
tacker can learn the outcome of her guess with 100% cer-
tainty, using fully automated attacks or involving some triv-
ial human help. Human-assisted captcha breaking services
are available, for cheap (see e.g., [27]). As we are aware,
verifiers in all known authentication schemes, output a suc-
cess or failure message after a trial, and we argue that such
explicit messages aid online guessing attacks. Explicit mes-
sages may include return codes from an authentication API,
protocol data from the verifier, text string, or even the con-
tinuation/discontinuation of the attempted session.

We introduce here Uvauth (user-verifiable authentication)
to reduce the attacker’s confidence on the outcome of her
guessed password by granting her access for any password
she enters. For a given userid, the correct password will
lead to the real user account, and all other passwords will
provide fake sessions (i.e., with fake user data). To avoid
detection by re-logging into the same account, same userid-
password pair will always result in the same session. Like-
wise, different userid-password pairs should also lead to dif-
ferent sessions in order that the legitimate session cannot be
distinguished from fake ones. The underlying assumption
is that real users will implicitly understand the outcome of
their authentication attempt by the presented data; i.e., an
unfamiliar account will indicate that the entered password is
incorrect, and they need to try again. On the other hand, a
random attacker may have little or no idea what to expect as
user data after being logged in, even if she launches a human-
assisted attack. Attackers can perform different operations
to discover a fake session, and our goal is to raise the bar
for such attacks to succeed—e.g., by requiring non-trivial
efforts from the attacker beyond simply solving a captcha.
By increasing the attack cost, we choose to tolerate the at-
tacks, instead of addressing them head-on. Users are also
freed from “solving” captchas, or answering personal secret
questions as part of their authentication.

Note that Uvauth is different than implicit authentication
(see e.g., [44]), where a user is authenticated by her usual
traits/actions. An explicit outcome is provided at the end
of such an authentication attempt, which we would like to
avoid. Our proposal is also independent of whatever secrets,
features or tokens used to verify a user; it is the outcome of
an authentication attempt that we would like to protect,
where online guessing is a concern.

Uvauth’s fake sessions can be seen as a form of deception,
which has been in use for centuries in traditional wars and
conflicts; see e.g., “All warfare is based on deception” [18].
Deception as a cognitive defensive technology has been ex-
tensively studied by many researchers for years; see e.g., [43,
50, 12, 3]. In current computer security techniques, this
methodology is well demonstrated in honeypots, where de-
ception is used to influence the behavior of attackers, or to
collect data for future use, e.g., to understand the attackers
and their target systems and network resources (see e.g., [45,
10, 39, 31]).

Our use of deception is not to gain more insights into
the attackers’ behaviors, but simply to raise the difficulty
of online guessing attacks against weak authentication se-
crets. The following analogy may further clarify the differ-

ence. Consider a virtual building with several locked rooms.
Honeypots protect access to a room by generating a fake
room on-the-fly or claiming that the room is unavailable.
In contrast, we create a fake room to protect the lock of a
room, assuming the lock is weak—i.e., given enough time,
a lock-picker can easily open it. Our use of fake sessions
can also be viewed as the no-information leakage property
of a perfect one-time pad (OTP) encryption: attackers have
no way of verifying a guessed key for an OTP scheme, as a
valid key exists for every candidate plaintext, i.e., attackers
do not know when they succeed.

Several challenges must be addressed for Uvauth. Gener-
ating fake sessions would require additional resources from
the verifier, and non-trivial efforts to mimic a legitimate ses-
sion. Protected accounts should have enough personal con-
tent so that legitimate users will easily learn whether they
have logged in with the correct password. To address less-
/non-personal accounts, we propose the use of distorted im-
ages / modified captchas as a communication channel from
the verifier to a client. The crucial difference with exist-
ing captcha here is that: we do not require users to solve
captchas verbatim (i.e., character-by-character) and type
the result. Instead, users are expected to use the captcha
messages as a second channel to verify their login (i.e., in
addition to the content they can see). More challenging
captcha schemes can be used in our setting, as users are not
required to decipher each character in the exact form.

In summary, our contributions include:

1. In user-level authentication, we introduce the idea of
programmably leaving the result of authentication on
the server (verifier). Such hiding of authentication
results may enable effective protection against online
guessing attacks.

2. We propose the use of adapted distorted image as a
computer-cipher/human-decipher channel to commu-
nicate short messages in human-machine interaction.

3. Our proposal requires no changes on the client side
software or existing password input UI, and can be
used with any authentication scheme vulnerable to on-
line guessing attacks.

2. THREAT MODEL AND ASSUMPTIONS
In this section, we describe our goals, the conditions under

which Uvauth works, and list situations that are considered
out-of-scope.

Goals. The objective of our proposal is to make both
machine-only and human-assisted attacks significantly more
difficult than using the current state-of-the-art captchas.
The level of difficulty can be set by the depth of deception
in Uvauth’s fake sessions.

Assumptions.

a) User-level authentication. We address authentication
scenarios where a human user is the claimant and a com-
puter is the verifier. We do not include machine-to-machine
authentication, e.g., automated script for connecting to a
database server.

Figure 1: Overview of user-verifiable authentication

b) Weak-secret-based, single-factor authentication.
Uvauth can be used independent of any existing authenti-
cation technique, e.g., text or graphical password schemes,
certificate-based schemes. However, Uvauth’s protection is
intended for situations where weak-secrets are used that can
be efficiently guessed through online attacks (e.g., a human-
chosen password vs. a random 128-bit key). Multi-factor
schemes that use an additional token or biometrics also may
not need protection against guessing attacks, assuming the
additional factors provide enough entropy. However, single-
factor multi-stage schemes (e.g., SiteKey or personal ques-
tions with passwords) may benefit from Uvauth; e.g., the
fake session can start right at the end of first-stage of au-
thentication. However, most of our discussion here considers
only commonly-used single-stage password authentication.

c) Data-oriented sessions. We focus on accounts that
mostly deal with user data (e.g., banking, email), instead
of providing some generic services to the user (e.g., Inter-
net access). Implementing fake sessions for service-oriented
accounts could be quite challenging, if not impossible.

d) Separate machines. The user/attacker software has
no means of accessing the verifier’s running environment
other than via the network channel used for authentication.
Otherwise, authentication results may leak from the verifier
through side-channels (e.g., [7, 42]).

e) Random attacker. Attackers in our model are assumed
to be random individuals, i.e., unrelated to a target user. If
the user is known to the attacker, fake sessions in Uvauth
may be detected by known information (e.g., Facebook pro-
file information, email contacts). However, the attacker may
know all valid userids of a target service.

f) No offline attacks. We assume that data at rest is
safe, e.g., password databases are inaccessible to attackers.
Otherwise, simpler offline attacks can be mounted to reveal
the passwords (if hashed or encrypted under a weak key).

g) Other password-unrelated security issues. Our
proposal only addresses online password guessing; so, if a
website or application is vulnerable to other types of at-
tacks such as SQL injections, Uvauth’s protection may not
help. We also do not address several other threats, includ-

ing: phishing, malicious software on the client or verifier,
and session hijacking attacks.

3. UVAUTH: USER-VERIFIABLE AUTHEN-
TICATION

In this section, we discuss Uvauth and the underlying self-
evidence of authentication that may make the scheme feasi-
ble. By analyzing some account properties, we also provide a
list of considerations for designing fake sessions, and discuss
scenarios where Uvauth may be more applicable.

Overview. Figure 1 shows an overall architecture of Uvauth.
Legitimate users and potential attackers are treated equally,
in terms of authentication results. A transaction gateway
accepts all incoming authentication requests; the gateway is
also configured to authenticate users (e.g., it has access to
user credentials). When a correct userid-password pair is
received, processing is handed over to the transaction center
and a legitimate session is established. Otherwise, when the
given password is incorrect, the user/attacker is redirected
to a sandbox-enabled environment that hosts fake user ses-
sions. The established sessions in both cases appear to be
(almost) the same to a machine. A random human attacker
may also be unable to judge the content of the fake account
without performing some non-trivial tasks.

3.1 Implicit detection of an authentication
outcome

We first consider authentication sessions where users can
distinguish success/failure without explicit messages from
the verifier. This is the basic type of authentication con-
sidered in Uvauth, and requires user-knowledge of the tar-
get account. In Section 4, we discuss less-personal accounts
where some explicit hints from the verifier are needed.

3.1.1 Self-verification
If the data fed to end users after a login request is personal

and of relatively high-entropy, the presented data itself may
be enough for a straightforward and effortless decision by
the real data owner. In this case, the authentication result
is implicit, i.e., requires no indication of failure or success.
Consider the following as examples of this type of authen-

tication. For most active users of a social networking site
(e.g., Facebook), users can (possibly) easily identify their
own accounts after a successful login—e.g., from the pro-
file info, page layout, friends list and messages. The same
is possibly also true for online banking login, identified by
e.g., user info, account balance, transaction history and reg-
istered bills. These types of accounts are highly personal and
quite unique to a user. More importantly, these accounts can
be populated with fake information to make them indistin-
guishable even to non-owner human users (in addition to
automated bots).

User-verifiability obviously requires that the same user ex-
perience is provided for a specific credential used. Therefore,
to implement a user-verifiable authentication scheme that
is both user-acceptable and attacker-indistinguishable, we
must consider the following issues. First, each fake session
generated for a specific userid-password pair (even if the
userid is non-existent), must appear to be the same for a
certain period of time. If randomness of fake sessions is dis-
tinguishable for login attempts with the same userid with
different passwords, attackers can easily detect the differ-
ence, and then learn the authentication outcome. On the
other hand, the fake session for a specific userid must change
with time, as is the case for many user accounts (e.g., new
messages and friends in a Facebook account; updated bal-
ance and new transactions in a banking account).

3.1.2 Additional login help for legitimate users
To aid users and help identify a successful login, a combi-

nation of the following methods can also be used.

a) Customized messages. A user customized welcome
message may be used for the identification of a valid ses-
sion. During account registration, a user can set up some
personalized information so that when a correct password is
entered, it will be displayed; otherwise, a random message
is displayed. Such customized messages may be an image,
or excerpts from a book. Note that, our use of customized
message/image is different than existing anti-phishing so-
lutions such as SiteKey [4], and Verified-by-Visa personal
message [47]. We do not address phishing, and security of
Uvauth is not dependent on users’ noticing the messages cor-
rectly or all the time. If the user does not pay heed to the
displayed image/message, they may be mislead into believ-
ing a successful login, which eventually will be detected when
they check carefully their account information. In contrast
to known vulnerabilities in SiteKey (e.g., [49]), no authenti-
cation secrets are leaked for the user’s mistake in Uvauth.

b) Secondary channels. An out-of-band signalling, e.g.,
SMS/twitter/email messages can also be used to notify when
a login is successful. Mobile SMS is widely used for user sta-
tus indication in many businesses, such as successful credit
card transactions (see e.g., MasterCard inControl [26]). We
assume here that the secondary channels are not compro-
mised; otherwise, an attacker can use such a channel for
verification. Periodically, users may also be notified about
failed login attempts through secondary channels (e.g., in
the form of a daily digest).

c) Warning messages. A warning message may be dis-
played so that the user is reminded that Uvauth is in place,
and verify whether they can access their data. An example
message is as follows: “Please check your account data; in
case you do not see your expected data, try again with the
correct password.”

d) Dynamic security skins. Anti-phishing techniques
such as synchronized random dynamic boundary [48] and
dynamic security skins [15] can be used as a means to iden-
tify an authentic server, and to communicate success/failure
messages to a client browser. Note that, Uvauth’s security
does not require these visual cues to be 100% reliable, or
always correctly matched by users; they simply provide an
additional channel for session verification.

e) Limiting fake sessions for known devices. Authen-
tication attempts from known devices with prior success-
ful logins for a specific userid can be exempted from fake
sessions when an incorrect password is entered, and given
directly a traditional failure message (e.g., incorrect userid
or password). User devices may be whitelisted by IP ad-
dresses, cookies, geolocation services as enabled in popular
browsers including Google Chrome1 and Mozilla Firefox,2 or
through other web-based device fingerprinting mechanisms
(see e.g., [34]). Assuming that most legitimate users access
their accounts from a relatively fixed set of devices (comput-
ers at home or office, or mobile devices), such exemptions
from fake sessions may aid usability; similar mechanisms
have been explored in prior work (see e.g., [38, 1]; more in
Section 6). However, to counter guessing attacks from in-
fected whitelisted devices and cookie theft, such exemptions
must be limited (e.g., by the number of allowed attempts
without fake sessions).

3.2 Designing fake sessions
Uvauth’s effectiveness depends on attackers being unable

to detect fake sessions efficiently. Below, we discuss few
considerations and account properties for designing effective
fake sessions.

3.2.1 Account properties
Here we list four factors that may be used to categorize

account types. We also discuss how these factors may be
considered during the generation of fake sessions.

a) Server-side data retention. Here we consider whether
the user is allowed to make changes after logged in and to
what extent the changes are kept and accessible when she
logs back in at a later time. This feature of a user account
could be resource-intensive, as fake sessions may also need
to store attacker-initiated changes. If no changes are stored,
inconsistent fake sessions may still be useful to some extent;
cf. Neagoe and Bishop [31]. For read-only accounts (e.g., call
logs of a pre-paid phone card), generating fake sessions could
be much easier. However, most online accounts generally
allow at least some changes (e.g., profile parameters). If the
size of updateable data is small, the cost of consistent fake
session generation may still remain affordable.

b) Client-side data representation. For most account
types, users get access to some data after logged in. How
much an attacker can understand the meaning of user data,
determines how easily she can detect a fake session. For
highly-personalized data (e.g., photos, blogs, and calendars),
fake session detection would be significantly difficult for an
attacker, even if human assistance is used; the attacker has
no obvious means to distinguish between fake and real data.
For impersonal, human-readable data (e.g., magazine sub-
scriptions), fake sessions should be populated with context-

1https://support.google.com/chrome/answer/142065
2http://www.mozilla.org/en-US/firefox/geolocation/

https://support.google.com/chrome/answer/142065
http://www.mozilla.org/en-US/firefox/geolocation/

aware, meaningful data. For impersonal data with machine
semantics (e.g., protocol traffic or command responses), it
may be more difficult to generate fake sessions, and some-
times specific restrictions should be applied to limit the cost
of fake sessions (e.g., running processor-intensive jobs in a
fake ssh session).

c) Update types. Some accounts are update-driven, i.e.,
frequently updated directly by both the account owner and
others for the purpose of communication; examples include
email and social networking accounts. Some accounts are
activity-driven, i.e., indirectly updated by user transactions;
examples include credit card accounts. Some accounts may
be of mixed type; e.g., a seller’s Paypal account is updated
by Paypal (e.g., transaction logs) and other users (e.g., com-
ments). These different account types should be modeled
correctly to design realistic fake sessions.

d) Externally-modifiable data. If anyone can influence
the content of a target account, the account is considered
externally-modifiable; examples include email accounts (e.g.,
anyone can send an email), social networking accounts (e.g.,
public posts). These accounts are susceptible to the post-
and-check attack as discussed in Section 5.

3.2.2 Considerations for fake session generation
a) Verisimilitude. There is a trade-off between the deploy-
ment of more realistic/consistent fake sessions with more
functionality and resource consumption on the server. We
define the depth of verisimilitude as the levels of operation
a fake session would allow, before it may be detected by
an automated attacker. Also, not all functions are equal in
terms of costs–e.g., allowing the update of a profile parame-
ter vs. searching for a transaction. As an example, consider
a fake session at an online banking portal; an automated
attempt can be performed by an attacker to transfer a cer-
tain amount of money to an account that directly/indirectly
belongs to him, as such tasks are not far down in the oper-
ations hierarchy. A countermeasure is to output deceptive
statements such as “Transfer-out is not activated for this
account”, “USB token is required for this transaction”. See
e.g., Rowe [43] for an in-depth discussion on how to design
good deceptions for intruders with a probabilistic model of
belief and suspicion. Moreover, text strings (e.g., names and
messages) used in fake sessions should meet certain criteria;
existing work on generating (somewhat meaningful) random
words/phrases may be used (see e.g., [13, 2]). Note that, for
Uvauth to be effective, detection of fake sessions must be
non-trivial, but it is non-essential to deploy highly complex
fake sessions to make detection very difficult.

b) Timing characteristics. Sometimes due to network de-
lay or processing on the server side, logging in or operations
on a website are subject to different levels of responsiveness.
Fake sessions should insert lags when required to simulate
timing characteristics of different operations in the opera-
tions hierarchy, hours of the day, or even seasons in a year.
This may also help confuse intruders as they cannot detect
fake sessions by profiling timing characteristics. The freed
time slots can be used for scheduling more fake sessions.

c) Data sanitization. Data sanitization (also known as
redaction for printed documents) is to hide or transform con-
fidential information before publishing. Examples include
erasing customer names, randomizing figures, or disrupting
the order of user behaviors. In some scenarios, it may be

necessary to reuse parts of the real production/user data
for generating fake sessions, especially accounts with a lot
of user data. Up-to-date operating data from a real system
may be sanitized by removing all privacy/security-sensitive
parts, while retaining interrelated rationality (see e.g., [6,
35]). For instance, in the case of a web portal of a mobile
phone subscriber, the prefix of a login phone number may
indicate some regional information; therefore, the presented
information, such as, the numbers in the call log and the
address of residence must also appear legitimate after san-
itization. The account balance can be randomized to some
extent, but the call/message logs could be pulled, sanitized
and mixed from a group of real users (i.e., individual iden-
tifiers are removed but group characteristics are preserved).
However, special care must be taken to sanitize data to avoid
exposure of sensitive data (see e.g., [30, 5]). For Uvauth, a
significant amount of fake data can be mixed with user data
before applying sanitization, which may reduce the risk of
privacy exposure.

d) Virtualization. As Uvauth may need to deal with a
large number of fake sessions (e.g., when under guessing at-
tack from a botnet), virtualization technologies can be used
for creating and hosting those sessions efficiently. We have
not tested generating such large-scale VM deployment for
evaluating Uvauth; cf. CLAMP [36]. Virtualization may
also help limit resources allocated to fake sessions, especially
when under heavy-load (e.g., due to DoS attack).

4. DISTORTED IMAGE AS A COMMUNI-
CATION CHANNEL

In this section, we discuss the possibility of using captchas
as a one-way communication channel (server-to-user), and
propose few variations of existing captchas for this purpose.
These captcha variants may be considered when techniques
in Section 3.1 are not preferred (e.g., for deployability or
usability reasons). Less personalized accounts (e.g., movie
streaming websites), and managed-systems in batch (e.g., re-
mote administration), may benefit from the proposed meth-
ods. We assume that these accounts would be attacked pri-
marily by bots (i.e., no human assistance), as they may be
less valuable compared to personal/financial accounts.

4.1 Captchas as a cipher
Most current captcha techniques are based on the use of

distorted images (or similar methods), and are used before
authentication, to verify the presence of a human user. In
contrast, we propose a post-authentication use of captchas.
The idea is to utilize the generation and recognition of dis-
torted images to communicate the authentication result back
to end users. End users will not be tested with our schemes
below, and no user response is needed; users simply become
recipients of the ciphered information. Note that, similar
use of captchas has been proposed earlier for different pur-
poses, e.g., verification of message integrity in an untrusted
terminal [24], and NSA-proof fonts [28].

Using captchas to communicate messages is relatively im-
mune to relay attacks (as compared with regular captchas).
A machine adversary can still make use of exploited popu-
lar websites, and have a large number of innocent users to
solve the distorted images. However, for Uvauth captchas,
only recognizing all characters is not enough, and semantic
interpretation is required to learn whether the feedback is

positive or negative. We discuss few captcha variants in Sec-
tion 4.2 that may make regular captchas more difficult for
machine attackers.

4.2 Adaptation of regular captchas
For regular captchas, the content can be arbitrary and

randomized, without carrying any meaningful information,
e.g., an irrelevant mix of letters and numbers. However,
for Uvauth, we need to transmit messages in natural lan-
guages with predefined meanings for conveying authentica-
tion results. Existing captcha breaking techniques (e.g., [17])
would perform even better against Uvauth captchas due to
the limited entropy of our messages (resulting mostly from
the fixed nature of the messages). To address this, the
captcha generation may be adapted as follows.

a) Randomized padding. Humans have the ability to se-
mantically interpret a message even if the message is garbled
to some extent. Most people do not read all the characters
in a word, or even all the words in a sentence (see e.g., [40]).
As an example, consider the following sentences: “hke It uu
is qKd k9l2 fine vMab weather.”, “If You Can Raed Tihs,
You Msut Be Raelly Smrat”; in most cases, humans can un-
derstand the meaning without much difficulty, but for ma-
chines it is not straightforward to extract the meaning from
these sentences, especially when such messages appear in a
distorted image. As an example, see Figure 2.

Figure 2: Distorted image with random padding

b) Indirect expression. Emotional tones in indirect pos-
itive or negative expressions such as “Everything goes well!”
(correct password entry), or “Your password makes me an-
gry!” (incorrect password entry) are quite self-evident for
humans, but not so straightforward for machines. Existing
work shows that machines can also learn to identify emo-
tions in text (e.g., [46]), but requires non-trivial resources
(e.g., a large knowledge database).

c) Display anywhere. Automated attacks on a captcha
somewhat depends on the ability to locate the captcha on
a screen. In regular usage, captchas are generally placed in
a deterministic location, to facilitate the ease of processing
by human users. As Uvauth’s communication channel is
one-way (i.e., no response back from the user), the distorted
image can be placed anywhere on the screen (as long as it
is visible to the user). It can also be embedded into a larger
bitmap (e.g., banners, ads, backgrounds) to make automated
identification difficult. Random delays (e.g., few seconds)
may also be added before displaying the message (after the
authentication phase), to frustrate the attacker even further.

4.3 An example with VNC
We now discuss how adapted distorted images may be

used with a Virtual Network Computing (VNC [41]) ap-
plication for remote desktop management.3 When the re-
mote machine is not personal to the user (e.g., accessed as a
sysadmin), login feedback via distorted images may be used.
Figure 3 shows a VNC session when an adapted distorted
image (with “display anywhere”) is used for authentication

3jrDesktop, see: http://jrdesktop.sourceforge.net

feedback. Here a legitimate user may expect such a string
to be displayed anywhere on the screen. In contrast, for a
machine attacker, it may be difficult to identify the distorted
message from a screen-capture, specifically, when the mes-
sage is blended with the background. Additionally, there is
no need to display the distorted image right after login; e.g.,
a short, random delay can be added to confuse the attacker
even further. The attacker may need to forward a video clip
to a human solver to perform a relay attack, which would
increase the cost of such an attack.

Figure 3: A VNC session with an adapted distorted
image

5. LIMITATIONS AND ATTACKS
In this section, we evaluate Uvauth from an attacker’s

perspective and list possible attacks. Some of these attacks
can be mitigated if special care is taken, while others are
limitations of our current design.

a) Post-and-check attacks. For certain accounts, attack-
ers can first post a message to the target account, and then
check for the posted message when launching a guessing at-
tack on that account. For example, an attacker can post a
comment on the target’s Facebook account, and by check-
ing whether this specific post is seen, the detection of a fake
session becomes easier. Similarly, an email can be sent to
a victim’s Gmail account for the same purpose, and the at-
tacker then just checks whether the email has been received
when in the fake session. We term these attacks as post-
and-check attacks, which can be automated and can make
designing fake sessions significantly difficult. Application-
specific defenses can be designed. For example, for a fake
Facebook session, the target user’s publicly-visible content,
including posts from non-friends should be used. Assuming
the attacker is not socially-connected to the user (i.e., not a
Facebook friend), post-and-check attacks can be restricted.

Designing a similar mechanism for email is less straightfor-
ward, as no explicit social connections exist in email. How-
ever, email services (e.g., Gmail) are currently quite effec-
tive against spam email accounts; recently-received spam
emails for a targeted account can be used in fake sessions
(albeit with the risk of some information leakage, as some-
times legitimate emails are labelled as spam). Attackers also
must send an email to the target account immediately be-
fore launching the guessing attack; otherwise, they would
not know whether the target user has deleted the unwanted
email, or they are in a fake session. Emails received from
first-time contacts in a recent period (e.g., in the last five
minutes) may be included in fake sessions. This can restrict
post-and-check attacks for email accounts, at the expense of
occasional information leakage. Email contacts as displayed
in a fake session could also be problematic. If fake email
addresses are used, by sending emails to these addresses, an
attacker may identify the fake session (e.g., if an immediate

http://jrdesktop.sourceforge.net

delivery failure message is received). On the other hand,
the use of real email addresses would cause obvious privacy
exposure (e.g., harvesting of emails).

b) Targeted attacks. If an attacker knows a victim in
person (real-world or online-only), she may also know one
or more contacts in the victim’s Facebook friend list, or the
account number / address for online banking. When such
information can be expected by the attacker, a fake session
can be easily detected. We focus on restricting large-scale
automated guessing attacks, and exclude targeted attacks
(although these attacks may also be significant in some sce-
narios; see e.g., [25]).

c) New denial-of-service attacks. Uvauth fake sessions
may be exploited to launch algorithmic/complexity-based
DoS attacks (e.g., [14]). An adversary can initiate many fake
sessions with resource-intensive operations on the server-side
to overload the server, e.g., text search in an email account.
So fake sessions must be designed carefully, and the allowed
activities therein should not consume too much resources;
i.e., the trade-off between verisimilitude and resource con-
sumption must be chosen with care.

d) Adapted relay attacks. Paid human solver services
(e.g., as discussed in [27]) can be used to attack Uvauth
messages that rely on adapted captchas. We can alleviate
such risk by applying “Display Anywhere”, so that the at-
tacker has to forward the whole screen or even a video clip
to the human solvers which incurs more effort.

e) Inconsistency attacks. If states in fake sessions are not
saved, then the attacker may detect a fake session by making
some changes to it, and checking for those changes after a
re-login. This is a known problem in deception, and referred
as inconsistency of deception. Neagoe and Bishop [31] argue
that even inconsistent deception can still effectively confuse
an attacker.

f) Acquired targeted attacks.4 Assume that a random
attacker wants to guess the password for a specific account
A and the attacker has already compromised another ac-
count B from the same user. Also assume that the pass-
word for A is different than that of B. Now, similar to the
targeted attacks discussed above, the attacker can use ex-
tracted information from B to detect fake sessions for A.
Note that, the attacker may need only temporary / one-
time access to B. If the attacker can successfully guess
the password for A, she can now use information from both
accounts to brute-force other accounts from the same user
(even when password reuse is avoided). As users generally
maintain several password-protected accounts, this attack
may be quite realistic—e.g., through the compromise of a
large-scale, popular service provider (for some recent inci-
dents, see e.g., [32]).

g) Legitimate users in a honeypot.4 If an attacker suc-
ceeds in compromising an account (e.g., through password
guessing), she could then (maliciously) change the password,
e.g., to keep the account in her control and deny access to the
legitimate user. Now, when the user tries to log in with the
old password, he will be confused; by not seeing his data, the
user might assume that he has mistyped the password, and
keep trying several times before realizing the attack. With-
out Uvauth, the user will be denied access, and possibly try
account recovery methods immediately.

4An anonymous NSPW2013 reviewer pointed us this attack.

A similar issue arises even when the account password
remains uncompromised. If an incorrect password is tried
(e.g., due to typos), users must detect the resulting fake ses-
sion, and then log out for another attempt. Such wrong pass-
word entries would cost more time for users due to the addi-
tional step of detecting fake sessions. This usability issue is
a side-effect of Uvauth, and does not happen with an explicit
feedback, as in regular authentication. Note that typos can
be avoided by displaying the password in cleartext (cf. [33]),
specifically when shoulder-surfing is not an issue (e.g., the
user sitting alone in her office). However, misremembered
passwords may not be readily detected by such password
unmasking, and the user may still be delayed in discovering
the situation, partly due to Uvauth’s fake sessions.

Other limitations include: we have not evaluated the server-
side load for generating and running a large number of fake
sessions. We also have not tested how effectively users can
detect implicit results from an authentication attempt, or
whether messages via adapted distorted images can be used
in practice.

6. RELATED WORK
Uvauth falls in the intersection of password security and

deception techniques. Here we highlight a few related
projects from both areas.

Pinkas and Sander [38] first proposed the use of Reverse
Turing Tests (RTTs, e.g., captchas) to restrict large-scale
online password dictionary attacks. The protocol challenges
users with RTTs for a small fraction (e.g., 5%) of all possi-
ble userid-password pairs to reduce the server-load (of gen-
erating RTTs) and usability impact (of answering RTTs),
while keeping the cost of launching a large-scale guessing
attack significantly high. Correct passwords always require
an RTT, unless a valid cookie from past successful login is
found. In Uvauth, deploying fake sessions only for a small
fraction of all login attempts, will also significantly reduce
server-side load. However, if attackers use a small password
dictionary (e.g., top 500 words), the number of fake sessions
they must process may be too small to provide any signif-
icant protection. Assuming many users use common/weak
passwords that may be found in small dictionaries, we rec-
ommend the use of fake sessions for all failed login attempts.

Later RTT-based proposals further improved security and
usability aspects of the original Pinkas and Sander [38]
scheme. For example, the password guessing resistant proto-
col (PGRP [1]), where more RTTs are imposed on unknown
(possibly attack) machines than known (possibly legitimate)
ones; machines are categorized using source IP addresses and
cookies. As discussed in Section 3.1.2, item (e), the use of
known devices may reduce the number of fake sessions for le-
gitimate users. Unlike RTT-based schemes, Uvauth does not
provide explicit authentication feedback, and avoids chal-
lenging users with RTTs. Recall that, even for our use of
distorted images as a communication channel, we do not
require a response from the user.

Goyal et al. [19] extend the pricing via processing paradigm
(introduced by Dwork and Naor [16]) to address online pass-
word guessing; the proposed protocol (CompChall) imposes
a significant amount of computation for the client on each
authentication attempt. CompChall would not adversely af-
fect legitimate users since their authentication attempts are
expected to be limited. In contrast, the scheme may nega-

tively impact an attacker when a large number of attempts
are made from a single machine. However, CompChall may
not be effective against attacks from a botnet.

The idea of closely monitored network decoys (honeypots),
to distract/deceive adversaries from real targets and to col-
lect analytical information about an attack, has more than
two decades of history (see e.g., [45, 10]). Our methodol-
ogy resembles honeypots in the sense that the attacker is
also given deliberate access, and fed with false information.
However, in contrast to honeypots, our use of deception fo-
cuses on hiding the result of an authentication attempt, in-
stead of detecting/analyzing malicious activities. Similar to
the generation of fake sessions in Uvauth, the deployment of
a honeypot is also time-consuming and resource-intensive.
Provos designed Honeyd [39], a framework for virtual honey-
pots that simulates virtual computer systems at the network
level. It saves physical resources in terms of resource consol-
idation and tolerance of high destructiveness. Additionally,
it is more flexible to configuration changes, and thus allows
more complicated behaviors to be implemented. Uvauth’s
fake session generation may benefit from such existing hon-
eypot work.

Herley and Florêncio [20] propose the use of honeypot
credentials to restrict brute-force guessing attacks on on-
line banking accounts. During account creation, for each
userid, a large number of honeypot passwords (n, a sub-
set of all possible passwords) are also registered along with
the correct password. The userid with honeypot passwords
are considered honeypot credentials, and all such credentials
will lead to honeypot sessions, which are especially tracked
by the bank server for money transfer attempts. To re-
duce the probability of mistyping by a real user, all honey-
pot passwords are chosen to be more than two characters
apart from the correct password; however, a brute-force at-
tacker is still n times more likely to try a honeypot password.
Honeypot sessions are created from real user data (e.g., at-
tributes, transactions) with fake identification information
such as names and addresses. In comparison, Uvauth’s scope
is broader, and it considers the use of small password dic-
tionary with known userids (instead of trying all possible
entries from the userid-password space).

Pavlovic [37] re-visits the idea of security by obscurity,
assuming attackers, like defenders, also have limited logical
or programming resources. It is argued that the behaviour
of defenders can also be hidden to gain tangible security
advantages. Uvauth’s use of deception is limited to hiding
only the defenders’ verification outcome from attackers.

Most work on deception focuses on maintaining consis-
tency of the false reality as presented to attackers. Neagoe
and Bishop [31] explore inconsistent deception for defending
computer resources, and argue that these techniques may
still be effectively used to track and monitor attackers. For-
going consistency may also make the design of deception
techniques simpler and less resource-intensive. Such tech-
niques may significantly reduce the cost of deploying fake
sessions in Uvauth.

Clark and Hengartner introduced panic password [11],
where a separate password is used to indicate a duress situ-
ation to the server without soliciting an authentication fail-
ure; the primary goal is to protect both the victim’s safety
and sensitive information residing on the server. On the en-
try of a panic password, the observable response is to deceive
the adversary with panic responses that are indistinguish-

able from the real response. While panic passwords are pro-
posed to be used by a legitimate user under duress, Uvauth
is targeted towards protecting passwords from being guessed
using a botnet, or by (random) human-assisted attackers.

Juels and Rivest recently proposed honeywords [23] (false
passwords) to address offline attacks against hashed pass-
word databases. For each account, the legitimate password
is mixed with several honeywords; thus, when an attacker
cracks a hashed password, she cannot be sure if it is the real
password or a honeyword. Also, the use of a honeyword will
trigger an alarm on the server-side (cf. panic password).

7. CONCLUSION
We propose Uvauth to hide authentication results from

attackers to mitigate the risk of online password guessing.
It can effectively deceive an attacker assuming fake sessions
can be efficiently generated (as an attacker may launch many
authentication attempts from a large-scale botnet). Most
current authentication schemes would fail to an adversary
who is willing to use human help to break into existing tech-
niques that are designed to limit only automated attacks. As
user accounts generally become more and more valuable with
the duration of use, it may be worthwhile for attackers to
invest in cheap human labor as a means to compromise user
credentials. In designing Uvauth, we explicitly consider such
threats and provide limited protection (possibly significantly
more than existing technologies). Implementing Uvauth fake
sessions would require server-side support, but no changes
are needed on the client-side software or existing password
input UI (including browser mechanisms such as “keep me
logged in”and cookies). However, Uvauth, as presented, has
not been fully evaluated, and has a number of limitations.
Our goal is to attract attention to an important drawback
of existing authentication schemes that enables large-scale
guessing attacks.

Acknowledgements
We thank our shepherd Michael Franz, anonymous
NSPW2013 reviewers, NSPW2013 attendees, Jeremy Clark,
Julie Thorpe, and members of the Concordia’s Computer Se-
curity Lab for their insightful suggestions and advice. The
second author is supported in part by an NSERC Discovery
Grant and Concordia University Start-up Program.

8. REFERENCES
[1] M. Alsaleh, M. Mannan, and P. van Oorschot.

Revisiting defenses against large-scale online password
guessing attacks. IEEE Transactions on Dependable
and Secure Computing (TDSC), 9(1):128–141, 2012.

[2] J. Aycock. @transformitt. Leonardo, 46(5):482–483,
Oct. 2013.

[3] G. Bakos and S. Bratus. Ubiquitous redirection as
access control response. In Annual Conference on
Privacy, Security and Trust (PST’05), St. Andrews,
NB, Canada, October 2005.

[4] Bank of America. SiteKey authentication: An
additional layer of online and mobile banking security.
https://www.bankofamerica.com/privacy/

online-mobile-banking-privacy/sitekey.go.

[5] M. Bishop, R. Crawford, B. Bhumiratana, L. Clark,
and K. Levitt. Some problems in sanitizing network

https://www.bankofamerica.com/privacy/online-mobile-banking-privacy/sitekey.go
https://www.bankofamerica.com/privacy/online-mobile-banking-privacy/sitekey.go

data. In IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises (WETICE 2006), Manchester, UK, June
2006.

[6] M. Bishop, J. Cummins, S. Peisert, A. Singh,
B. Bhumiratana, D. Agarwal, D. Frincke, and
M. Hogarth. Relationships and data sanitization: A
study in Scarlet. In New Security Paradigms Workshop
(NSPW’10), Concord, MA, USA, Sept. 2010.

[7] D. Brumley and D. Boneh. Remote timing attacks are
practical. Computer Networks, 48(5):701–716, Aug.
2005.

[8] E. Bursztein, S. Bethard, J. C. Mitchell, D. Jurafsky,
and C. Fabry. How good are humans at solving
CAPTCHAs? A large scale evaluation. In IEEE
Symposium on Security and Privacy, Oakland, CA,
USA, May 2010.

[9] E. Bursztein, M. Martin, and J. C. Mitchell.
Text-based CAPTCHA strengths and weaknesses. In
ACM Computer and Communications Security
(CCS’11), Chicago, IL, USA, Oct. 2011.

[10] B. Cheswick. An evening with Berferd, in which a
cracker is lured, endured, and studied. In Winter
USENIX Conference, San Francisco, CA, USA, Jan.
1992.

[11] J. Clark and U. Hengartner. Panic passwords:
Authenticating under duress. In USENIX Workshop
on Hot Topics in Security (HotSec’08), San Jose, CA,
USA, July 2008.

[12] F. Cohen. The use of deception techniques: Honeypots
and decoys. The Handbook of Information Security,
3:646–655, 2006.

[13] H. Crawford and J. Aycock. Kwyjibo: automatic
domain name generation. Software: Practice and
Experience, 38(14):1561–1567, 2008.

[14] S. A. Crosby and D. S. Wallach. Denial of service via
algorithmic complexity attacks. In USENIX Security
Symposium, Washington, DC, USA, Aug. 2003.

[15] R. Dhamija and J. D. Tygar. The battle against
phishing: Dynamic security skins. In Symposium on
Usable Privacy and Security (SOUPS’05), Pittsburgh,
PA, USA, July 2005.

[16] C. Dwork and M. Naor. Pricing via processing or
combating junk mail. In Advances in Cryptology -
CRYPTO’92, Santa Barbara, CA, USA, August 1992.

[17] Futurity.org. Gotcha! captcha security flaws revealed.
Available at: http://www.futurity.org/
science-technology/

gotcha-captcha-security-flaws-revealed/.

[18] L. Giles. Sun Tzu on the Art of War: The Oldest
Military Treatise in the World. London Luzac, 1910.
Chapter 1: verse 18.

[19] V. Goyal, V. Kumar, M. Singh, A. Abraham, and
S. Sanyal. Compchall: Addressing password guessing
attacks. In International Symposium on Information
Technology: Coding and Computing (ITCC’05), Las
Vegas, NV, USA, April 2005.

[20] C. Herley and D. Florencio. Protecting financial
institutions from brute-force attacks. In Proceedings of
The Ifip Tc 11 23rd International Information
Security Conference, volume 278, pages 681–685.
Springer US, 2008.

[21] T. Holz, M. Engelberth, and F. Freiling. Learning
more about the underground economy: A case-study
of keyloggers and dropzones. In European Symposium
on Research in Computer Security (ESORICS’09),
Saint Malo, France, Sept. 2009.

[22] Imod Digital. Social network numbers, May 2012.
http://www.imoddigital.com/

iD-Social-Network-Statistics-2012-eBook.pdf.

[23] A. Juels and R. L. Rivest. Honeywords: Making
password-cracking detectable. Technical report (May
2, 2013). http://people.csail.mit.edu/rivest/
pubs/JR13.pdf.

[24] J. King and A. dos Santos. A user-friendly approach
to human authentication of messages. In Financial
Cryptography and Data Security (FC’05), Roseau,
Dominica, February 2005.

[25] Knowthenet.org.uk. More teenagers are being hacked
by friends online but did you know it could be illegal?
News article (Jan. 6, 2012). http://www.knowthenet.
org.uk/.

[26] MasterCard. MasterCard inControl service now
available from Barclaycard. News release (Jan. 21,
2010). http://www.mastercard.com/us/company/en/
newsroom/pr_mc_incontrol_service.html.

[27] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy,
G. M. Voelker, and S. Savage. Re: CAPTCHAs –
understanding CAPTCHA-solving services in an
economic context. In USENIX Security Symposium,
Washington, DC, USA, August 2010.

[28] S. Mun. Making democracy legible: A defiant
typeface. Blog post (June 20, 2013). http://blogs.
walkerart.org/design/2013/06/20/

sang-mun-defiant-typeface-nsa-privacy/. Project
website: http://z-x-x.org.

[29] A. Narayanan and V. Shmatikov. Fast dictionary
attacks on passwords using time-space tradeoff. In
ACM Computer and Communications Security
(CCS’05), Alexandria, VA, USA, November 2005.

[30] A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. In IEEE
Symposium on Security and Privacy, Oakland, CA,
USA, May 2008.

[31] V. Neagoe and M. Bishop. Inconsistency in deception
for defense. In New Security Paradigms Workshop
(NSPW’06), Dagstuhl, Germany, Sept. 2006.

[32] NewYorker.com. The inevitable downfall of your
password. News article (July 17, 2013). http://www.
newyorker.com/online/blogs/elements/2013/07/

tumblr-vulnerability-how-to-secure-your-passwords.

html.

[33] J. Nielsen. Stop password masking. Online article
(June 23, 2009). http://www.nngroup.com/

articles/stop-password-masking/.

[34] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster:
Exploring the ecosystem of web-based device
fingerprinting. In IEEE Symposium on Security and
Privacy, San Francisco, CA, USA, May 2013.

[35] S. R. M. Oliveira and O. R. Zaiane. Protecting
sensitive knowledge by data sanitization. In IEEE
International Conference on Data Mining (ICDM
2003), Melbourne, FL, USA, November 2003.

http://www.futurity.org/science-technology/gotcha-captcha-security-flaws-revealed/
http://www.futurity.org/science-technology/gotcha-captcha-security-flaws-revealed/
http://www.futurity.org/science-technology/gotcha-captcha-security-flaws-revealed/
http://www.imoddigital.com/iD-Social-Network-Statistics-2012-eBook.pdf
http://www.imoddigital.com/iD-Social-Network-Statistics-2012-eBook.pdf
http://people.csail.mit.edu/rivest/pubs/JR13.pdf
http://people.csail.mit.edu/rivest/pubs/JR13.pdf
http://www.knowthenet.org.uk/
http://www.knowthenet.org.uk/
http://www.mastercard.com/us/company/en/newsroom/pr_mc_incontrol_service.html
http://www.mastercard.com/us/company/en/newsroom/pr_mc_incontrol_service.html
http://blogs.walkerart.org/design/2013/06/20/sang-mun-defiant-typeface-nsa-privacy/
http://blogs.walkerart.org/design/2013/06/20/sang-mun-defiant-typeface-nsa-privacy/
http://blogs.walkerart.org/design/2013/06/20/sang-mun-defiant-typeface-nsa-privacy/
http://z-x-x.org
http://www.newyorker.com/online/blogs/elements/2013/07/tumblr-vulnerability-how-to-secure-your-passwords.html
http://www.newyorker.com/online/blogs/elements/2013/07/tumblr-vulnerability-how-to-secure-your-passwords.html
http://www.newyorker.com/online/blogs/elements/2013/07/tumblr-vulnerability-how-to-secure-your-passwords.html
http://www.newyorker.com/online/blogs/elements/2013/07/tumblr-vulnerability-how-to-secure-your-passwords.html
http://www.nngroup.com/articles/stop-password-masking/
http://www.nngroup.com/articles/stop-password-masking/

[36] B. Parno, J. M. McCune, D. Wendlandt, D. G.
Andersen, and A. Perrig. Clamp: Practical prevention
of large-scale data leaks. In IEEE Symposium on
Security and Privacy, Oakland, CA, USA, May 2009.

[37] D. Pavlovic. Gaming security by obscurity. In New
Security Paradigms Workshop (NSPW’11), Marin
County, CA, USA, Sept. 2011.

[38] B. Pinkas and T. Sander. Securing passwords against
dictionary attacks. In ACM Computer and
Communications Security (CCS’02), Washington, DC,
USA, November 2002.

[39] N. Provos. A virtual honeypot framework. In USENIX
Security Symposium, San Diego, CA, USA, Aug. 2004.

[40] K. Rayner, S. J. White, R. L. Johnson, and S. P.
Liversedge. Raeding wrods with jubmled lettres:
There is a cost. Psychological Science, 17(3):192–193,
Mar. 2006.

[41] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual network computing. IEEE Internet
Computing, 2(1):33–38, 1998.

[42] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In ACM
Computer and Communications Security (CCS’09),
Chicago, IL, USA, November 2009.

[43] N. C. Rowe. Designing good deceptions in defense of
information systems. In the Annual Computer Security

Applications Conferencen (ACSAC’04), Tucson, AZ,
USA, December 2004.

[44] E. Shi, Y. Niu, M. Jakobsson, and R. Chow. Implicit
authentication through learning user behavior. In
Information Security Conference (ISC’10), Boca
Raton, FL, USA, Oct. 2010.

[45] C. Stoll. The Cuckoo’s Egg: Tracking a Spy Through
the Maze of Computer Espionage. Doubleday, 1989.

[46] C. Strapparava and R. Mihalcea. Learning to identify
emotions in text. In ACM Symposium on Applied
Computing (SAC 2008), Fortaleza, Brazil, March
2008.

[47] Visa. Verified by Visa FAQ & credit card security.
Online FAQ. http://usa.visa.com/personal/
security/visa_security_program/vbv/verified_

by_visa_faq.html#anchor_15.

[48] Z. E. Ye, S. Smith, and D. Anthony. Trusted paths for
browsers. ACM Transactions on Information and
System Security (TISSEC), 8(2):153–186, 2005.

[49] J. Youll. Fraud vulnerabilities in SiteKey security at
Bank of America. Technical article (July 18, 2006).
http://www.cr-labs.com/publications/

SiteKey-20060718.pdf.

[50] J. Yuill, D. Denning, and F. Feer. Using deception to
hide things from hackers: Processes, principles, and
techniques. J. Information Warfare, 5(3):26–40, 2006.

http://usa.visa.com/personal/security/visa_security_program/vbv/verified_by_visa_faq.html#anchor_15
http://usa.visa.com/personal/security/visa_security_program/vbv/verified_by_visa_faq.html#anchor_15
http://usa.visa.com/personal/security/visa_security_program/vbv/verified_by_visa_faq.html#anchor_15
http://www.cr-labs.com/publications/SiteKey-20060718.pdf
http://www.cr-labs.com/publications/SiteKey-20060718.pdf

	Introduction
	Threat model and Assumptions
	Uvauth: User-verifiable authentication
	Implicit detection of an authentication outcome
	Self-verification
	Additional login help for legitimate users

	Designing fake sessions
	Account properties
	Considerations for fake session generation

	Distorted image as a communication channel
	Captchas as a cipher
	Adaptation of regular captchas
	An example with VNC

	Limitations and Attacks
	Related work
	Conclusion
	References

