
1

Deceptive Deletion Triggers under Coercion
Lianying Zhao and Mohammad Mannan

Abstract—For users in possession of password-protected en-
crypted data in persistent storage (i.e., “data at rest”), an obvious
problem is that the password may be extracted by an adversary
through dictionary attacks, or by coercing the user. Traditional
full disk encryption (FDE) or plausibly deniable encryption
(PDE) cannot adequately address such situations. Therefore,
making data verifiably inaccessible in a stealthy and quick fashion
may be the preferred choice, specifically for users such as gov-
ernment/corporate agents, journalists, and human rights activists
with highly confidential secrets, when caught and interrogated in
a hostile territory. Using secure storage on a Trusted Platform
Module (TPM) and modern CPU’s trusted execution mode (e.g.,
Intel TXT), we design Gracewipe to enable secure and verifiable
deletion of encryption keys through a special deletion password.
When coerced, a user can fake compliance and enter the deletion
password; and then the user can prove to the adversary that
Gracewipe has been executed and the real key is no longer
available (through a TPM quote), hoping for a favorable situation
(e.g., end of torture). To unlock the target encryption key the
adversary can only guess passwords through the valid Gracewipe
environment with a high-risk of triggering deletion of the real key.
Based on our two primary Gracewipe prototypes (i.e., software-
based FDE with TrueCrypt and hardware-based FDE with SED),
we also design and implement an extended family of unlocking
schemes for triggering deletion, to achieve better plausibility,
security and usability. We incur between 2–2.5 seconds delay
during boot, and no performance penalty at run-time.

Index Terms—Coercion, full disk encryption, panic passwords,
cryptographic data deletion

I. INTRODUCTION AND MOTIVATION

PLAUSIBLY deniable encryption (PDE) schemes for file
storage were proposed more than a decade ago; see

Anderson et al. [2] for the first academic proposal (1998).
In terms of real-world PDE usage, TrueCrypt [3] is possibly
the most-widely used tool, available since 2004. Several other
systems also have been proposed and implemented. All these
solutions share an inherent limitation: an attacker can detect
the existence of such systems (see e.g., TCHunt [4]). A
user may provide reasonable explanation for the existence
of such tools or random-looking free space; e.g., claiming
that TrueCrypt is used only as a full-disk encryption (FDE)
tool, no hidden volumes exist; or, the random data is the
after-effect of using tools that write random data to securely
erase a file/disk. However, a coercive attacker may choose to
detain and punish a suspect up until the true password for the
hidden volume is revealed, or up to a time period as deemed

This work is the extension of an NDSS 2015 paper [1]. The new contribu-
tions are summarized under “Differences with the NDSS version” in Section I.

Copyright (c) 2016 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

L. Zhao and M. Mannan are with the Concordia Institute for Information
Systems Engineering at Concordia University, Montreal, Canada.
E-mail: {z lianyi, mmannan}@ciise.concordia.ca

necessary by the attacker. Such coercion is also known as
rubberhose cryptanalysis [5], which is alleged to be used in
some countries (e.g., Turkey [6], USA [7]); several incidents of
forced password extractions during border crossings have also
been reported in the recent past (e.g., USA [8], France [9]).
The use of multiple hidden volumes or security levels (e.g.,
as in StegFS [10]), may also be of no use if the adversary is
patient. Another avenue for the attacker is to derive candidate
keys from a password dictionary, and keep trying those keys,
i.e., a classic offline dictionary attack. If the attacker possesses
some knowledge about the plaintext, e.g., the hidden volume
contains a Windows installation, such guessing attacks may
(easily) succeed against most user-chosen passwords.

Another option for the victim is to provably destroy/erase
data when being coerced, unbeknownst to the adversary (i.e.,
triggered in an undetectable way). Note that such coercive
situations mandate a very quick response time from tools used
for erasure irrespective of media type (e.g., magnetic or flash);
i.e., tools such as ATA secure erase, and DBAN [11] that rely
on data overwriting are not acceptable solutions (cf. [12]). Oth-
erwise, the attacker can simply terminate the tool being used
by cutting off the power, or make a backup copy of the target
data first. The need for rapid destruction was recognized by
government agencies decades ago; see Slusarczuk et al. [13].
For a quick deletion, cryptographic approaches appear to be an
appropriate solution, as introduced by Boneh and Lipton [14]
(see also [15], [16]). Such techniques have also been imple-
mented by several storage vendors in solid-state/magnetic disk
drives that are commonly termed as self-encrypting drives
(SEDs); see, e.g., Seagate [17], HGST/Western Digital [18]
(cf. ISO/IEC WD 27040 [19]). SEDs allow overwriting of
the data encryption key via an API call. Currently, as we are
aware of, no solutions offer pre-OS secure erase that withstand
coercive threats (i.e., with undetectable deletion trigger). Even
if such a tool is designed, still several issues remain: verifiable
deletion is not possible with SEDs alone (i.e., how to ensure
that the secure erase API has been executed); and undetectable
deletion trigger does not mean undetectable execution (e.g.,
calls to the deletion API can be monitored via SATA/IDE
interface). We use SEDs as part of our solution without directly
depending on their key deletion API.

In this paper, we discuss the design and implementation
of Gracewipe, a solution implemented on top of TrueCrypt1

and SEDs that can make the encrypted data permanently
inaccessible without exposing the victim. When coerced to
reveal her hidden volume encryption password, the victim will
use a special pre-registered password that will irrecoverably
erase the hidden volume key. The coercer cannot distinguish

1Projects that are based on TrueCrypt codebase or related to TrueCrypt, can
also used/adapted with Gracewipe; e.g., TCnext (http://truecrypt.ch), Cipher-
Shed (https://ciphershed.org), VeraCrypt (https://veracrypt.codeplex.com).

http://truecrypt.ch
https://ciphershed.org
https://veracrypt.codeplex.com

2

the deletion password from a regular password used to unlock
the hidden volume key. After deletion, the victim can also
prove to the coercer that Gracewipe has been executed, and
the key cannot be recovered anymore. A trusted hardware chip
such as the Trusted Platform Module (TPM) alone cannot
realize Gracewipe, as current TPMs are passive (i.e., run
commands as sent by the CPU), and are unable to execute
external custom logic. To implement Gracewipe, we use TPM
along with Intel trusted execution technology (TXT), a special
secure mode available in several consumer-grade Intel CPU
versions (similar to AMD SVM).

The basic logic in Gracewipe for a PDE-enabled FDE
system (e.g., TrueCrypt) can be summarized as follows. A user
selects three (types of) passwords during the setup procedure:
(i) Password PH that unlocks only the hidden volume key;
(ii) Password PN that unlocks only the decoy volume key;
and (iii) Password PD that unlocks the decoy volume key and
overwrites the hidden volume key (schemes with multiple PDs
are discussed in Section V). These volume keys are stored
as TPM-protected secrets that cannot be retrieved without
defeating TPM security. Depending on the scenario, the user
will provide the appropriate password. When coerced, the
user can disclose PDs or PN, but not PH. Attackers’ success
probability of accessing the hidden volume can be configured
to be very low (e.g., deletion after a single invalid password),
and will depend on their use of user-supplied or guessed
passwords, and/or the deployed variant in Gracewipe-XD; see
Section V. Deletion (overwriting with zeros) of the hidden
volume key occurs within the TPM hardware chip, an event we
assume to be unobservable to the attacker. Now, the attacker
does not enjoy the flexibility of password guessing without
risking the data being destroyed.

The relatively simple design of Gracewipe however faced
several challenges when implemented with real-world systems
such as TrueCrypt and SEDs. As Gracewipe works in the
pre-OS stage, no ready-made TPM interfacing support is
available. We have to construct TPM protocol messages on our
own. Furthermore, we primarily base Gracewipe on TrueCrypt
as it is open sourced. Auditability is essential to security
applications, and most other FDE solutions as we found
are proprietary software/firmware and thus verifying their
design and implementation becomes difficult for users. For this
reason, we must be able to load Windows after exiting TXT (as
TrueCrypt FDE is only available in Windows), which requires
invocation of real-mode BIOS interrupts. It turned out to be a
major challenge for Gracewipe. For the SED-based solution,
we also choose to boot a Windows installation from the
SED disk. However, our Windows-based prototypes require
a few heuristic changes specific to the versions of tboot and
Windows. This is due to Intel TXT’s incompatibility with real-
mode (switching from protected to real-mode is required by
Windows boot) and Windows’ unawareness of TXT. Booting
a Linux-based OS after Gracewipe would have been easier to
implement (we also managed to do so), but that would have
less utility than the Windows-targeted implementations.

Note that, in Gracewipe, the victim actively participates in
destroying the hidden/confidential data, and thus may still be
punished, e.g., put into jail for a significant period of time

(e.g., [20]; see also cryptolaw.org for a survey on related laws
in different jurisdictions). Gracewipe is expected to be used
in situations where the exposure of hidden data is no way
a preferable option. We assume a coercive adversary, who
may release the victim when there is no chance of recovering
the target data. Complexities of designing technical solutions
for data hiding (including deniable encryption and verifiable
destruction) are discussed in a blog post by Rescorla [21].

Authentication schemes under duress have been explored
in recent proposals, e.g., [22], [23]. Such techniques may be
integrated with Gracewipe, but they alone cannot achieve its
goals, e.g., being able to delete keys under duress.
Contributions.
1) We propose Gracewipe, a secure data deletion mechanism
to be used in coercive situations, when protecting the hid-
den/confidential data is of utmost importance. To the best of
our knowledge, this is the first proposal to enable the following
features together: triggering the hidden key deletion process in
a way that is indistinguishable from unlocking the hidden data;
verification of the deletion process; preventing offline guessing
of passwords used for data confidentiality; restricting password
guessing only to an unmodified Gracewipe environment; and
tying password guessing with the risk of key deletion.
2) We implement Gracewipe with a PDE-mode TrueCrypt
installation, and with an SED disk. Our implementation relies
on secure storage as provided by TPM chips, and the trusted
execution mode of modern Intel/AMD CPUs; such capabilities
are widely available even in consumer-grade systems.
3) From our implementation experience with TrueCrypt and
SED, apparently the design of Gracewipe is generic enough
that it can be easily adapted for other existing software and
hardware based FDE/PDE schemes. SED-based Gracewipe is
discussed elsewhere [1].
4) Apart from secure deletion, our pre-OS trusted execution
environment may enable other security-related checks, e.g.,
verifying OS integrity as in Windows secure boot, but through
an auditable, open-source alternative. To the best our knowl-
edge, Gracewipe is the first project to enable running a fully-
functional Windows OS at the end of a trusted execution
session (Intel TXT).
5) We also analyze and compare several schemes for triggering
password-based deletion, with considerations respectively on
plausibility, security, and usability; some of these schemes are
adapted from Clark and Hengartner [24]. We also discuss
implementation of some selected schemes. We label these
schemes as Gracewipe-XD (Gracewipe Extended Deletion).
Users may choose a scheme suitable to their threat model.
Differences with the NDSS version [1]. We make the
following significant changes to the current article. Five new
deletion triggering password schemes have been introduced to
address various attack scenarios, which were not considered
previously (Section V). All schemes (the basic variant in [1]
and the new ones) are also analyzed from security and ease-
of-use perspectives (Section VII). Due to Windows being
unaware of some protections as enabled by Intel TXT, we
had to disable DMA for disk access in the previous imple-
mentation; this limitation has been mitigated in the current

cryptolaw.org

3

implementation (Section IV-D). The basic Gracewipe variant
would also result in TPM deadlock as expected according to
the TPM specifications (Section IV-D); we manage to bypass
this deadlock with the new schemes. The overall design has
also been updated to use different TPM APIs that simplify the
earlier design and implementation, without losing any security
guarantees (Section III, specifically, under Section III-C). We
also evaluate the performance overhead of Gracewipe at boot-
time (Section VI); note that there is no run-time overhead.

II. GOALS AND THREAT MODEL

Gracewipe leverages several existing tools and mechanisms,
such as multiboot [25], chainloading,2 tboot [26], and True-
Crypt. We assume the reader is familiar with these techniques
(for a brief introduction, see [1]).

A. Goals and terminology
Goals. (1) When under duress, the user should be able to
initiate key deletion in a way indistinguishable to the ad-
versary. The adversary is aware of Gracewipe, and knows
the possibility of key deletion, but is unable to prevent such
deletion, if he wants to try retrieving the suspected hidden
data. (2) In the case of emergency data deletion (e.g., noticing
that the adversary is close-by), the user may also want to
erase her data quickly. (3) In both cases, when the deletion
finishes, the adversary must be convinced that the hidden data
has become inaccessible and no data/key recovery is possible,
even with (forced) user cooperation. (4) The adversary must
be unable to retrieve TPM-stored volume encryption keys
by password guessing, without risking key deletion; i.e., the
adversary can attempt password guessing only through the
Gracewipe interface. Direct offline attacks on volume keys
must also be computationally infeasible.
Terminology and notation. We primarily target the software-
based FDE with support for plausible deniability (termed as
PDE-FDE, e.g., TrueCrypt under Windows). A decoy system
refers to the one appearing to be the protected system. The
user should maintain certain frequency of using it for the
purpose of deception. A hidden system is the actual protected
system, the existence of which may be deniable and can only
be accessed when the correct password is provided. The user
should avoid leaking any trace of its use (as in TrueCrypt;
cf. [27]). KN is the key needed to decrypt the decoy system,
and PN is the password for retrieving KN. Similarly, KH is
the key needed to decrypt the hidden system and PH is the
password for retrieving KH. In addition, PD is the password
to perform the secure deletion of KH; note that there might be
multiple PDs (see Section V), but to simplify discussion, we
consider only one here. KN and KH are stored/sealed in TPM
NVRAM, which can be retrieved using the corresponding
password, only within the verified Gracewipe environment. We
use hidden/protected/confidential data interchangeably.
Overview of how Gracewipe goals are achieved. For goal
(1), we introduce PD that retrieves KN but at the same time
deletes KH from TPM. Thus, if either the user/adversary
enters a PD, the hidden data will become inaccessible and

2https://www.gnu.org/software/grub/manual/html node/Chain
002dloading.html

unrecoverable (due to the deletion of KH). PN, PH and
PDs should be indistinguishable, e.g., in terms of password
composition. In a usual situation, the user can use either PH
or PN to boot the corresponding system. If the user is under
duress and forced to enter PH, she may input a PD instead,
and Gracewipe will immediately delete KH (so that next time
PH only outputs a null string). Under duress, she can reveal
PN/PDs, but must refrain from exposing PH. The use of any
PD at any time (emergency or otherwise), will delete KH the
same way, and thus goal (2) can be achieved.

Goal (3) can be achieved by a chained trust model and
deterministic output of Gracewipe. The trusted environment
is established by running the deletion operation via DRTM,
e.g., using Intel TXT through tboot [26]. We assume that
Gracewipe’s functionality is publicly known and its measure-
ment (in the form of values in TPM PCRs) is available for
the target environment, so that the adversary can match the
content in PCRs with the known values, e.g., via a TPM
quote. Gracewipe prints a hexadecimal representation of the
quote value, and also stores it in TPM NVRAM for further
verification. A confirmation message is also displayed after
the deletion (e.g., “A deletion password has been entered and
the hidden system is now permanently inaccessible!”).

For goal (4), we use TPM sealing, to force the adversary
to use a genuine version of Gracewipe for password guessing.
Sealing also stops the adversary from modifying Gracewipe
in such a way that it does not trigger key deletion, even
when a PD is used (otherwise unsealing would fail). We use
long random keys (e.g., 128/256-bit AES keys) for actual data
encryption to thwart offline attacks directly on the keys. A by-
product of goal (4) is that, if a Gracewipe-enabled device (e.g.,
a laptop) with sensitive data is lost or stolen, the attacker is still
restricted to password guessing with the risk of key deletion.

B. Threat model and assumptions

Here we specify assumptions for Gracewipe, and list several
unaddressed attacks.

1) We assume the adversary to be hostile and coercive, but
rational otherwise (cf. [21]). He is diligent enough to verify the
TPM quote when key deletion occurs, and then (optimistically)
stop punishing the victim, as the hidden password is of no use
at this point. If the victim suspects severe retaliation from the
adversary, she may choose to use the deletion password only
if the protected data is extremely valuable, i.e., she is willing
to accept the consequences of provable deletion.
2) The adversary knows well (or otherwise can easily find
out) that a TrueCrypt disk is used, and probably there exists a
hidden volume on the system. He is also aware of Gracewipe,
and its use of different passwords for accessing decoy/hidden
systems and key deletion. However, he cannot distinguish PDs
from other passwords that the victim is coerced to provide.
3) The adversary can have physical control of the machine and
can clone the hard drive before trying any password. However,
we assume that the adversary does not get the physical ma-
chine when the user is using the hidden system (i.e., KH is in
RAM). Otherwise, he can use cold-boot attacks [28] to retrieve
KH; such attacks are excluded, but see also TRESOR [29].

https://www.gnu.org/software/grub/manual/html_node/Chain_002dloading.html
https://www.gnu.org/software/grub/manual/html_node/Chain_002dloading.html

4

4) The adversary may reset the TPM owner password with the
takeownership command, or learn the original owner password
from the victim; note that NVRAM indices (where we seal the
keys) encrypted with separate passwords are not affected by
resetting ownership, or the exposure of the owner password.
With the owner password, the adversary can forge TXT launch
policies and allow executing a modified Gracewipe instance.
Any such attempts will fail to unlock the hidden key (KH), as
KH is sealed with the genuine copy of Gracewipe. However,
with the modifications, the attacker may try to convince the
user to enter valid passwords (PH, PN or PD), which are then
exposed to the attacker. We expect the victim not to reveal
PH, whenever the machine is suspected to have been tampered
with. We do not address the so called evil-maid attacks [30],
[31], but Gracewipe can be extended with existing solutions
against such attacks (e.g., [32]).
5) We exclude inadvertent leakage of secrets/passwords from
human memory via side-channel attacks, e.g., the EEG-based
subliminal probing [33]; see Bonaci et al. [34] for counter-
measures. We also exclude truth-serum [35] induced attacks;
effectiveness of such drugs is also strongly doubted (cf. [36]).
6) Gracewipe facilitates secure key deletion, but relies on
FDE-based schemes for data confidentiality. For our proto-
types, we assume TrueCrypt adequately protects user data and
is free of backdoors.
7) We assume the size of hidden data is significant, i.e., not
memorizable by the user, e.g., a list of all US citizens with top-
secret clearances (reportedly, more than a million citizens3).
After key deletion, the victim may be forced to reveal the
nature of the hidden data, but she cannot disclose much.
8) We assume Intel TXT is trustworthy and cannot be compro-
mised and thus ensures the calculated measurements can be
trusted (hence only genuine Gracewipe unseals the keys); past
attacks [37], [38] on TXT include exploiting the CPU’s SMM
(System Management Mode) to intercept TXT execution.
SMM attacks can be addressed by Intel SMI transfer monitor
(STM [39]). We also assume that hardware-based debuggers
cannot compromise Intel TXT. We could not locate any
documentation from Intel in this regard.4 As documented [40],
AMD’s SVM disables hardware debug features of a CPU.

III. GRACEWIPE DESIGN
In this section, we expand the basic design as outlined in

Section I. We primarily discuss Gracewipe for an FDE solution
with deniable hidden volume support (i.e., PDE-FDE), and we
use TrueCrypt as a concrete example. The FDE-only version
(e.g., based on SED, not discussed here) is simpler than the
PDE-FDE (TrueCrypt) design, e.g., no decoy volume and no
chainloading are needed. These two versions mostly use the
same design components, differing mainly in the key unlocked
by Gracewipe and the destination system that receives the key.
A. Overview and disk layout

Gracewipe inter-connects several components, including:
BIOS, GRUB, tboot, TPM, wiper (provides Gracewipe’s core

3http://www.usatoday.com/story/news/2013/06/09/
government-security-clearance/2406243/

4See a related tboot discussion thread at (Aug. 2012): http://sourceforge.
net/p/tboot/mailman/message/29747527/

functionality—see below under “Wiper”), TrueCrypt MBR,
and Windows bootloader. The hidden data is stored encrypted
on a hard drive, as in a typical TrueCrypt hidden volume. We
assume two physical volumes: one hosting the decoy system
(regular TrueCrypt encrypted volume), and the other volume
containing the hidden system (hidden TrueCrypt volume). KN
and KH are technically TrueCrypt volume “passwords” for
the two volumes respectively, but we generate them from a
random source. Both are stored in TPM NVRAM, and are
not typed/memorized explicitly by the user. In the deployment
phase, they are generated with good entropy and configured as
TrueCrypt “passwords”. Each valid user password (including
any PD) will unlock a corresponding key in TPM NVRAM
for a specific purpose. See Fig. 1 for Gracewipe components.

TPM Gracewipe

PH decrypts KH

PN decrypts KN

PD deletes KH
 decrypts KN

User PWD input

Hidden system

Decoy system

Secure storage

Power on/Reset

DeletionKH = key for hidden system
trigger

schemes
?

KN = key for decoy system

Disk Encryption

TXT-protected

(e.g., TrueCrypt and SED)

Fig. 1: A generalized representation of Gracewipe. PN =
password for the decoy system; PH = password for the hidden
system; PD = deletion password. PH unlocks KH, the key
that decrypts the hidden system; PN unlocks KN, the key
that decrypts the decoy system; PD deletes KH from TPM
NVRAM, and may optionally unlock KN.

Wiper. The core part of Gracewipe’s functionality includes
bridging its components, unlocking appropriate TPM-stored
keys, and deletion of the hidden volume key. We term this
part as the wiper, which is implemented as a module securely
loaded with tboot. It prompts for user password, and its behav-
ior is determined by the entered password (or more precisely,
by the data retrieved from TPM NVRAM with that password).
Namely, if the retrieved data contains only a regular key
(KH/KN), the wiper passes it on to TrueCrypt, or if it appears
otherwise (as designated by a deletion indicator) to have a
control block for deletion, the wiper performs the deletion and
passes the decoy key KN to TrueCrypt. We modified TrueCrypt
to directly accept input from the wiper (i.e., no password
prompt), and boot the corresponding encrypted system. Note
that each user password corresponds to one TPM NVRAM
index. Each index contain an indicator value (byte-long; ‘P’ for
PH, ‘K’ for KN and ‘D’ for PD) concatenated with a proper
decryption key (KH/KN, or for the deletion index either some
random data or KN). Both the indicator and key values are
protected by TPM sealing, and an attacker cannot exploit the
indicator values (see Section VIII under item (b)).

As the wiper must operate at an early stage of system boot
and still provide support for relatively complex functionality,
it must meet several design considerations, including: (1) It
must be bootable by tboot, as we need tboot for the measured
launch of the wiper. This can be achieved by conforming to
required file formats (e.g., ELF) and header structures (e.g.,

http://www.usatoday.com/story/news/2013/06/09/government-security-clearance/2406243/
http://www.usatoday.com/story/news/2013/06/09/government-security-clearance/2406243/
http://sourceforge.net/p/tboot/mailman/message/29747527/
http://sourceforge.net/p/tboot/mailman/message/29747527/

5

multiboot version number). (2) It must load the TrueCrypt
loader for usual operations, e.g., decrypt the correct volume
and load Windows. This is mainly about parameter passing
(e.g., TrueCrypt assumes register DL to contain the drive
number). (3) It must access the TPM chip and perform several
TPM operations including sealing/unsealing, quote generation,
and NVRAM read/write. Note that at this point, there is no OS
or trusted computing software stack (such as TrouSerS [41])
to facilitate TPM operations. (4) It must provide an expected
machine state for the component that will be loaded after the
wiper (e.g., Windows). Both TrueCrypt and Windows assume
a clean boot from BIOS; however, Windows supports only
strict chainloading, failure of which causes several troubles
including system crash (see Section IV-D).

B. Execution steps

Gracewipe’s execution flow is outlined in Fig. 1. It involves
the following steps: (1) The system BIOS loads GRUB, which
then loads tboot and other modules including the wiper and
ACM SINIT module. (2) Tboot performs necessary checks and
calculates/matches the platform measurement with the values
stored in TPM (halts on failure). (3) The wiper prompts the
user for password, and uses the entered password to access
TPM indices where we store KH/KN one by one (the extended
schemes are different, see Section V). If no index is accessible,
an invalid password is received (resulting reboot/halt). (4) As
part of the TPM accessed data, an indicator field shows if the
entered password is PH, PN or PD. Upon reception of PD,
the wiper immediately erases KH from TPM, and performs a
quote to display the attestation string on the screen. (5) In the
case of PH or PN, the wiper copies the decryption key (i.e.,
TrueCrypt “password”) to a memory location to be retrieved
later by TrueCrypt. (6) The wiper switches the system back to
real-mode, reinitializes it by mimicking what is done by BIOS
at boot time. (7) TrueCrypt MBR is executed, which proceeds
as if the wiper-copied “password” is typed by the user and
loads the system as usual (the decoy or the hidden one).

C. Sealing in NVRAM

TPM specifications mandate mechanisms against guessing
attacks on password-protected NVRAM data (e.g., only a
few passwords may be consecutively tested within a specific
period of time). However, such mechanisms are inadequate for
Gracewipe as the adversary has physical control and can pa-
tiently keep testing passwords, and user-chosen passwords tend
to be relatively weak. The implementation of such mechanisms
is also vendor-specific (see Section IV-D). If the adversary
would like to brute-force a specific index a few times until
the chip is locked out and reset it with TPM ResetLockValue,
he may eventually succeed by automating the process.

To address this, we apply TPM’s data sealing technique,
so that if an altered software stack (i.e., anything other than
the genuine copy of Gracewipe) is run, the desired data will
not be unsealed, and thus will remain inaccessible. Note that
sealing does not disallow guessing from within the Gracewipe
environment; however, when Gracewipe is active, each guess
may unlock the hidden/decoy data, or trigger key deletion.

Instead of directly sealing the keys into NVRAM, we make
use of the access-control-based PCR binding to achieve the

same goal. When an NVRAM index is defined, selected PCRs
are specified as the access requirement in addition to the user
password (authdata). The stored key can be accessed only if
both the password and the PCR values (correct environment)
are satisfied. This design choice prevents offline guessing
of user passwords protecting the sealed keys, as opposed to
the following construction: use PN as the authdata secret to
protect KN stored in NVRAM in its sealed form. Without
the correct environment, KN cannot be unsealed. However, by
checking the TPM’s response (success/failure) to a guessed
authdata secret value, the attacker can learn PN and other valid
passwords, without going through Gracewipe; the attacker can
then use the (guessed) valid passwords in Gracewipe to unlock
corresponding keys. With our current construction, TPM will
output the same failure message, if either PCR values or
passwords are incorrect.

D. Password management
Under the strong adversarial model in Gracewipe, the user

(e.g., a security personnel) is expected to properly maintain the
configured passwords, and if they are lost the recommended
solution is redeployment; i.e., there must be no password
recovery. The data or keys protected under Gracewipe must
not be backed-up in any Internet-accessible storage under any
circumstances; this will enable easy coercion even after a
successful local deletion. However, password update can still
be supported; we propose a simple mechanism below (can be
extended to accommodate other schemes in Section V).

At the same password prompt where the user normally
unlocks the system at boot-time, password update mode can be
triggered by using a special key sequence (e.g., “Ctrl+Enter”
instead of the regular “Enter” key). The received password
is first handled by the deployed deletion triggering scheme,
i.e., deletion will be initiated if PD is typed. After the pass-
word update mode is entered (i.e., deletion is not triggered),
the user is prompted to enter an existing password to be
changed (PH/PN/PD), and then type the new password twice.
Gracewipe will try to access indices one by one until a success
and replace the protecting password with the new one. Note
that in order not to reveal any further information in the
password update mode, no explicit feedback is provided, i.e.,
merely “Update process is done!” is displayed regardless of
a successful update or failure. Also, a random delay can be
added so that timing characteristics do not help distinguish
valid passwords. We have implemented this scheme.

IV. IMPLEMENTATION WITH TRUECRYPT

In this section, we summarize certain implementation con-
siderations of Gracewipe specific to TrueCrypt; for details,
see [1]. We also discuss several side effects resulting from our
implementation choices and corresponding workarounds. The
implementation effort mainly involves the wiper (Gracewipe
core), TrueCrypt modifications, and a few configuration steps
to make the components work together.

Our choice of Windows is largely in consideration of
its prevalence, and TrueCrypt FDE’s availability only un-
der Windows. We have also successfully booted up Linux
via Gracewipe with fewer changes compared to Windows.
Gracewipe in itself is a boot-time tool, which does not run

6

along-side the user OS. For our prototype system, we used a
primary test machine with an Intel Core i7-3770S processor
(3.10 GHz) and Intel DQ77MK motherboard, 8GB RAM with
1TB Western Digital hard drive.

A. Implementing the wiper

Approximately, the wiper has 400 lines of code in assembly,
700 lines in C and 1300 lines of reused code from tboot.
As discussed in Section III-A, TPM must be accessed by the
wiper that runs at an early stage of system boot, i.e., right after
GRUB and tboot. Due to lack of TPM access support at boot
time (at least for NVRAM storage as in our case), we must
handle the communications between TPM and the wiper, and
implement a subset of the TCG software stack [41].

We choose to communicate with TPM through the MMIO
interface for future compatibility and consistency with tboot.
After being able to send commands to TPM via MMIO, we
implement the authdata-protected NVRAM access functions
(for secure storage of Gracewipe keys). Due to inadequate
documentation, we had to reverse-engineer related functions
in the TCG stack for our implementation.

Moreover, for verifying the correct execution of Gracewipe
(and thus the deletion of KH), the wiper must be able to
perform a TPM Quote. A quote operation involves generating
a signature on a requested set of PCRs, and a verifier-provided
nonce with TPM’s attestation identity key (AIK). We allow the
verifier (adversary) to enter a string of his choice as the nonce
and store the quote value in an unprotected NVRAM index as
well as displaying it on the screen.

At the end, we have developed the following TPM func-
tions: tpm nv read value auth(), tpm nv write value auth(),
tpm nv define release(), tpm loadkey2(), tpm quote2(); we
reuse most other functions from tboot.

B. Adapting TrueCrypt

To make TrueCrypt aware of Gracewipe, we require some
changes in its source code. We keep such changes to a
minimum for easier maintenance and deployment. They are
mostly in BootLoader.com.gz (BootMain.cpp), and a few
minor changes in BootSector.bin (BootSector.asm). In Boot-
Sector.bin, changes are for the modified version of Boot-
Loader.com.gz to pass the original integrity check (CRC32).
In BootLoader.com.gz (TrueCrypt modules), the modifications
are mainly for receiving decrypted passwords (treated as keys
in Gracewipe) from the wiper without user intervention.

C. Orchestrating components

Additional deployment-time efforts are needed to make
Gracewipe components work seamlessly. Such efforts include
configuring GRUB (with a Gracewipe-customized menu.lst),
initializing TPM, and installing TrueCrypt. Also, as the in-
tegrity of the Gracewipe environment relies on tboot’s policy
enforcement, it is critical to ensure the proper setup of the
MLE policy and tboot’s custom policy.

Preparation in the host OS. A script that works with the
TrueCrypt installer must automatically generate a strong key
(i.e., random and of sufficient length) to replace the user-
chosen password. This is done for both KN and KH. Then
the user must copy (manually or with the help of the script)

KN and KH to be used with Gracewipe. She must destroy her
copies of the two keys after the setup phase.

Preparation in Gracewipe. Gracewipe comes with a single
consolidated binary with two modes of operation: deployment
and normal. Modes are determined by the value (zero/non-
zero) in an unprotected NVRAM index; note that, reinitializing
Gracewipe has no security impact (beyond DoS), but still
a simple password can be set to avoid inadvertent reset. If
the value is non-zero, normal mode is entered; otherwise,
Gracewipe warns the user and enters the deployment mode.

In the deployment mode, the user is prompted for the
three passwords (PN, PH and PD) of her choice and the
two keys (KN and KH) generated in the OS. The wiper seals
the two keys with the current environment measurements into
NVRAM indices with the three passwords. The indices can
be user-configured to avoid conflicts with other use of the
TPM; however, the order of password to index assignment
is randomized to avoid any possibility of interference with
the deletion process using time differences (cf. Section VI).
Note that different unlocking schemes may involve different
procedures, see Section V. In the end, the wiper toggles the
mode value for the next time to run in the normal mode.

D. Windows and TPM issues

Disabling TXT DMA protection for Windows. During
implementation, we faced several issues related to Windows,
mostly due to Windows being unaware of protections enabled
by Intel TXT. Unlike Linux, Windows also cannot be adapted
for TXT as it is closed-sourced. Below, we discuss a DMA
problem and its solution.

TXT protects the execution environment from unauthorized
code. The I/O protection (i.e., no peripheral on the bus other
than the measured code can access protected memory regions)
is enforced in hardware by IOMMU in collaboration with the
chipset. By default, it is left enabled, when TXT is torn down
with instruction GETSEC[SEXIT] (see [42]); the guest OS is
supposed to be aware of the DMA protection, and perform
any additional cleanup operations.

In addition to the platform-specific fixed DMA Protected
Range (DPR, usually 3MB in size), custom Protected Memory
Regions (PMRs [43]) can also be specified to SINIT for DMA
protection. SINIT guarantees that the measured program (in
our case: tboot and the wiper) is covered by either the DPR
or one of the PMRs; otherwise, the program cannot be started.

The consequence of the aforementioned DMA protection
depends on the OS taking control after TXT exit; e.g., if
the OS is aware of IOMMU, the protected ranges can be
avoided or remapped, or IOMMU should be disabled. For
Gracewipe with Windows, IOMMU must be disabled due
to Windows’ unawareness. There is an IOMMU register
DMAR PMEN REG, and by setting its DMA PMEN EPM bit
to 0, the IOMMU PMR can be disabled.

If the PMRs are left enabled to Windows, as in the initial
implementation of Gracewipe [1], the system will behave
unpredictably, when memory access hits the protected regions.
For example, right after Windows switches to the hard disk de-
vice driver from BIOS calls, the booting process fails with UN-
MOUNTABLE BOOT VOLUME (0x000000ED). The rea-

7

son code of 0xC000014F indicates a disk hardware problem,
which is incorrect as we could boot Windows without tboot.
Initially, we changed the ATA channel to use the “PIO”
mode instead of “Ultra DMA Mode 5”, and Windows booted
successfully, but with disabled DMA for disk operations (i.e.,
degraded disk performance). Disabling IOMMU PMRs solved
this issue without affecting disk performance.
TPM deadlock. Here, we discuss an issue originating from
our somewhat unusual way of leveraging TPM. By design,
TPM NVRAM is intended to provide protected access to
confidential data. Such protection, especially with authdata
access, is unsuitable to be used as a general purpose decryption
oracle: a program accessing NVRAM is expected to supply the
correct authdata secret, and a failed attempt is considered as
part of a guessing attack or an anomaly.

We attempt to consecutively access one to three NVRAM
indices with the same user password, i.e., until we can
unlock a key, or fail at all three authdata-protected indices.
Therefore, TPM actually counts each failed attempt as a
violation and may enter a lockout state (released by an explicit
reset or timeout); for details, see under dictionary attack
considerations in the TPM specification [44]. We relied on
TPM ResetLockValue and time-out during our development.

Note that this limitation is mitigated by the DL-distance
and pattern-based Gracewipe-XD schemes (Section V), where
the secret data to compare with is unsealed from NVRAM
and the user-typed password is not used as authdata (thus no
failed authentication to access NVRAM).

V. EXTENDED UNLOCKING SCHEMES

In the basic version of Gracewipe, only one or a few
predefined PDs are allowed. In this section, we discuss
password-based deletion triggers to avoid limitations of the
basic Gracewipe design (see below). We adapt some existing
schemes and explore new ones, and implement the most
promising variants (called Gracewipe-XD).
Limitations of few deletion passwords. (1) The adversary’s
risk in guessing passwords is rather low. One or a few deletion
passwords represent a very small fraction of a large set of
possible passwords, e.g., millions in the case of brute-forcing,
or at least hundreds, in the case of a small dictionary of most
frequent passwords. (2) In terms of plausibility, the user is left
with too few choices when coerced to provide a list of valid
passwords; passwords other than PN, PH or PD will unlock no
system nor trigger the deletion, and generate an error message.
The adversary may choose to punish the user for any invalid
password. With three valid passwords, the attacker’s chance
of guessing PH is at least 1

3 (although the risk of triggering
deletion is also the same).

A. Existing panic password schemes

We summarize several existing panic password propos-
als [24] (primarily for Internet voting), and analyze their
applicability in our threat model (client-only).
2P. The user has a regular password (in our case, PH) and
a panic password (in our case, PD). The 2P scheme applies
to situations where authentication reactions are unrecoverable;
e.g., if PD is entered in Gracewipe, further adversary actions

cannot help data recovery, as the target key KH is now
permanently inaccessible. However, if the attacker can extract
both passwords from the victim, the chance of triggering
deletion/panic is 1

2 ; for 3P, the chance is: 2
3 , and so on. Thus

2P resembles the mechanism in the basic Gracewipe, which
has both the aforementioned limitations.
2P-lock. When the reactions are recoverable, i.e., after PD is
entered, knowing PH is still useful for the adversary (unlike
Gracewipe), the adversary may continue guessing until he
finds PH, but is bound to a time limit to end coercion (e.g., for
escaping). In this case, a lockout mechanism can be applied
to allow only one attempt, and make the two passwords
indistinguishable. If a valid password is entered, the system
always behaves the same (the panic passwords would signal
coercion silently); then within a specified period, if a second
valid but different password is used, the system locks out for
a period longer than the adversary’s time limit. However, 2P-
lock is ill-suited for Gracewipe as there is no trusted clock to
enforce the lockout (the BIOS clock can be easily reset).
P-Compliment. This scheme is applicable against persistent
adversaries (i.e., reactions are recoverable and no time limit
for coercion). Instead of having a limited number of panic
passwords, any invalid password (i.e., other than the correct
one) can be considered a panic password. This simple rule
will result in user typos to trigger unwanted panic/deletion.
To alleviate, passwords that are close to the correct one (i.e.,
easily mistyped) can be considered invalid (instead of panic),
and thus the password space is divided into three sets based
on edit distance: the correct password, invalid passwords and
panic passwords. The user can now provide a large number
of panic passwords, and typos are tolerated. Note that for
a persistent adversary, it is assumed that there is no fatal
consequence when a panic password is used (e.g., as in the
case of online voting, the account is locked for a while). Thus,
if the panic password and invalid password spaces are not well
mixed, the adversary can try to approximate the boundary
between them with multiple attempts. In Section V-C, we
discuss a Gracewipe variant derived from P-Complement.
5-Dictionary. For better memorizability, a user can choose
5 words from a standard dictionary, using a password space
division similar to P-Compliment: any 5 words in the dic-
tionary other than the user-chosen ones are considered panic
passwords; any other strings are invalid. This scheme tolerates
user typos and provides a large set of panic passwords. How-
ever, the number of panic passwords (Pn 5 , for a dictionary
of n words) could still be much smaller than the invalid ones.
We propose an adapted version of this scheme in Section V-D.
5-Click. For image-based schemes, any valid region in an
image (excluding parts used for the correct login) can be used
to communicate the panic situation. As Gracewipe relies only
on text passwords, we exclude such schemes.

B. Counter-based deletion trigger

We design a counter-based mechanism by adapting 2P-
lock to limit adversarial iterative attempts without increasing
the risk of accidental deletion (by user). Reaching the limit
of failed attempts is used to trigger deletion, instead of

8

locking out the system. Below, we provide the design and
implementation of this adapted scheme.
Design. We keep the functionality of PD/PH/PN as in the
basic Gracewipe design, i.e., entering PD will still initiate
an immediate deletion. In addition, we now count the num-
ber of invalid attempts (i.e., entry of passwords other than
PD/PH/PN), and use the counter value as a deletion trigger
when a user-defined preset threshold (e.g., 10) is reached. The
counter must be integrity-protected—i.e., can be updated only
by the correct Gracewipe environment.

An important consideration is when to reset the counter
value. Because a legitimate user may also mistype sometimes,
and as such errors accumulate the deletion will be triggered
eventually. We consider two options for resetting the counter
value: (1) Timeout. It is mainly used in online authentication
systems. However, without a reliable clock source, it is inappli-
cable to Gracewipe. (2) Successful login. Assuming that typos
are relatively infrequent, a legitimate user will successfully
login before the threshold is reached. We use such login to
reset the counter. Note that only the entry of a valid PH
is considered a successful login (but not PN, which can be
revealed to the adversary when needed).
Implementation. This scheme is implemented by simply
adding checks to where the entered password has failed to
unlock any indices and where KH is successfully unlocked.
The counter value is sealed in a separate NVRAM index with
the environment measurements. We also bind the measure-
ments to both read and write access of this index so that a
modified program cannot even read it, not to mention updating.
At deployment time, the counter is initialized to 0. A user-
specific trigger value is secured the same way as the counter
(i.e., no access outside the correct Gracewipe environment).
If the adversary tries to reset either of them by re-initiating
Gracewipe deployment, he will have KH erased first before
both values are reset. The logic is as follows: Any invalid
passwords will increment the counter; entry of PN does not
affect the counter; entry of PH will reset it to 0. Whenever the
counter value is equal to the trigger value, deletion is initiated.

C. Edit-distance-based password scheme

The counter-based deletion trigger can severely limit guess-
ing attempts. However, if the user is forced to reveal all valid
passwords, the attacker’s guessing success rate will increase,
due to the limited number of valid passwords (PN and few
PDs). We design the following variant to counter both threats.
Design. Following the P-Compliment scheme, we use edit
distance to divide the password space. Instead of predefined
PD/PH/PN, we develop a rule to determine which category
the password falls into during authentication. There will be
no invalid passwords any more, and actions are taken silently
(unlock the hidden system, decoy system, or trigger deletion).

We must balance between the risk of user typos and the
coverage of passwords the adversary may guess. To measure
the closeness between two passwords, we use edit distance:
the number of operations (edits) required to convert one string
to another. By centering to user-defined PH, we can treat the
rest of the password space according to edit distance. The

PDs

PNs

PH

Threshold2

DL-distance

Fig. 2: Dividing password space with DL-distance

farther a password is from PH, the more likely it is entered
by the adversary, and vice versa.

There are different variants of edit distance metrics, mostly
depending on the types of allowed edit operations (e.g., inser-
tion, deletion, substitution, and transposition). These metrics
usually provide similar performance in distinguishing strings
but with various computation complexity (less critical for
Gracewipe). We use the Damerau-Levenshtein distance [45]
(DL-distance), which considers only the following operations:
insertion (one character), deletion (one character), substitution
(one character) and transposition (two adjacent characters).

The choice of edit distance metrics may also involve other
considerations. For example, we can take into account cog-
nitive aspects (e.g., words with interchangeable meanings or
user-specific typing habits), and device/physical aspects (e.g.,
common keyboard layouts). Especially, the CapsLock key
must be checked, which can lead to large edit distance even
when the correct password characters are typed, and convert
all characters into lower case before processing. If such aspects
are parametrized, a training process can also be introduced to
customize Gracewipe-XD for a specific user.

If we denote the entered password as PX, the overall logic is
as follows (see Fig. 2): if DL-distance (PX, PH) is less than or
equal to Threshold1, PH is received; if DL-distance (PX, PH)
is greater than Threshold1 but less than or equal to Threshold2,
then PN is received; otherwise, PD is received, which triggers
the deletion process (including quote generation). We convert
both PX and PH into lowercase for the DL-distance calculation
(to avoid accidental CapsLock on status).

Note that, using DL-distance, multiple PHs can be allowed
to access the hidden volume (e.g., by allowing Threshold1
to be greater than 0). However, the usability benefit may be
insignificant, as the range has to be centered to one PH, and
thus forgetting PH may also indicate not remembering those
that are only one or two characters different. On the other
hand, allowing multiple PHs will increase the adversary’s
guessing probability (PHs cover more in the guessable space).
At the end, we kept Threshold1 to 0, i.e., a single PH is used.

In contrast to P-Complement [24], password spaces for PN
and PD may not need to be well-mixed in our variant. How-
ever, we still re-examine any potential security consequence
of our choice as follows:
1) Only a single PD will suffice to make the target data
inaccessible. Thus approximating PH with multiple provided
PDs or PNs is infeasible due to the high risk of deletion.
2) The adversary may extract non-PH words (i.e., PNs and
PDs) from a victim, before launching a guessing attack

9

through the Gracewipe interface. Such seemingly non-secret
information may help the adversary to identify boundaries
between password spaces (cf. [46]). In Gracewipe-XD, edit
distance is omnidirectional (unlike the simple depiction in
Figure 2, where values are centralized to one PH on the same
plane), and also parametrized by character sets, maximum
length etc. We thus argue that the attacker cannot easily
identify a trend/pattern pointing to PH.

Implementation. A significant change in the edit-distance-
based scheme is that we must store PH in an NVRAM
index for the DL-distance calculation. We seal PH with the
Gracewipe environment measurements. At evaluation time,
PH must be loaded to the system memory (with the correct
Gracewipe environment), which may provide a chance to
launch cold boot attacks [28]; note that DMA attacks are
prevented by TXT. However, in our implementation, PH stays
in memory for a short period of time—PH is unlocked after the
candidate password is entered, and erased immediately after
the DL-distance calculation (on average, 3-4 milliseconds in
our test environment, for 8-character passwords). In this case,
we argue that timing the cold boot attack to extract PH would
be infeasible; for complexities of such attacks, see e.g., [47],
[48]. Alternatively, PH can be copied directly to CPU registers
to bypass memory attacks (cf. TRESOR [29]).

D. Other possible schemes

We have also explored more possibilities for the password
schemes and deletion triggers. They can be further examined
and implemented for specific use-cases.
Pattern-based deletion passwords. The user is allowed to
define her own customized pattern for PDs, e.g., using regular
expressions. Any string that does not match such pattern
will be treated as PNs or invalid. This may provide better
memorizability while allowing a large number of PDs (users
must remember the pattern, but not the actual PDs). A fore-
seeable downside is that the adversary may learn the pattern
(e.g., through text-mining) from passwords extracted from
the victim, and then avoid passwords of such pattern when
guessing. Also, this scheme does not address mistyping.
Misremember-tolerant deletion passwords. A user may
accidentally enter a deletion password (e.g., due to stress,
misremember) and realize the mistake instantly. In the basic
Gracewipe, this would be fatal, as KH will be deleted imme-
diately after receiving a PD. To reduce such accidental dental
deletion, we adapt the counter-based scheme as follows.

For any entered PD, before triggering deletion, a counter
value is checked; if it is already 1 (or any custom threshold),
deletion is triggered as usual; otherwise, the counter value is
incremented and the entered PD is just treated as PN. The
counter value is initialized to 0 during deployment. A correct
entry of PH will reset the counter. Thus, at the cost of allowing
the adversary to try an additional password, accidental deletion
can be avoided.
Small-dictionary scheme. The use of a built-in dictionary
may serve as an alternative for tolerating user typos. The
assumption here is that a mistyped word is more likely to
be absent in the dictionary (but not always, e.g., race and

face). Multiple user-chosen words (e.g., 5) form a passphrase.
We adapt the 5-Dictionary scheme [24] to incorporate the
following considerations: (1) We would like to follow the
principle in the edit-distance-based scheme, i.e., the number
of PDs is arbitrarily large to make sure that the probability of
triggering deletion is rather high, meanwhile with PNs serving
as a buffer zone to accommodate typos. (2) To increase the
number of PDs, we can treat the invalid passwords in 5-
Dictionary as PDs. However, most such invalid passwords
are formed by non-dictionary words, and therefore can be
easily entered by mistyping. Thus, we would like to design
an adapted scheme that triggers deletion with non-dictionary
words but tolerates mistyping.

Instead of using large natural dictionaries (e.g., English
vocabulary), the user defines a custom dictionary that contains
her memorizable strings (words or non-words). The size of the
custom dictionary is relatively small that fits in TPM NVRAM,
e.g., 50–100 words; such a small dictionary ensures that at a
very high probability a random word falls outside the dictio-
nary and may eventually lead to deletion. However, the custom
dictionary must be both confidentiality and integrity protected,
unlike the public standard dictionary in 5-Dictionary.

A PH consists of three (or more) segments, each picked
from the custom dictionary. If none of the three segments of
the typed password belong to the dictionary, the password
is considered as PD, and deletion is triggered. Otherwise,
the typed password is treated as PN. We assume that the
probability of mistyping all three segments is low, reducing
the chance of inadvertent deletion trigger by mistyping or
even misremembering (see below). In contrast, without the
knowledge of the custom dictionary, the attacker’s guessable
password space is as large as 5-Dictionary.

This scheme also partially addresses accidental deletion due
to misremembering. If the user chooses to include all potential
words/strings she may use in her passphrases for other ac-
counts, even if she misremembers, still one or more segments
of the misused passphrase fall in the custom dictionary and
thus will be only treated as a PN.

Another benefit of the small-dictionary scheme is that the
invalid password space and the deletion password space can
be better mixed (for plausibility). Also, the hidden password
is more difficult to approximate from extracted passwords
(i.e., not reflecting constant space “away” from other pass-
words), because the custom dictionary diffuses candidate
invalid/deletion passwords from the hidden one. Also, the
custom dictionary being small allows it to be stored securely in
TPM NVRAM, which removes access to the sealed dictionary
without the correct Gracewipe environment (as opposed to
sealed data stored on disk).

VI. PERFORMANCE OVERHEAD

By design, Gracewipe merely replaces the user authenti-
cation part of an existing FDE scheme at boot-time, and
does not interfere with the runtime performance of the OS
or applications. In this section, the boot-time overhead of
Gracewipe in normal operations is evaluated to demonstrate
Gracewipe’s practicality. We exclude the one-time deployment
phase and quote generation after deletion as they occur only

10

in special cases, and involve additionally less than a second
(for operations like loading keys in TPM and quoting).
Methodology of measurement. Unlike Linux kernel’s
do gettimeofday(), we lack a reliable clock source in the pre-
OS environment. We use CPU’s Time Stamp Counter (TSC)
via the rdtsc instruction. TSC stores the total number of
machine cycles since the processor reset. A divisor (denoted
as N.TSC hereafter) can be calculated so that TSC/N.TSC
produces the total number of elapsed milliseconds (instead
of machine cycles). This process is called TSC calibration,
where the hardware 8253 Programmable Interval Timer (PIT)
is programmed to produce a millisecond-long interval and the
TSC value difference before and after is N.TSC. We do not
try more recent alternatives (e.g., the invariant TSC feature in
recent CPUs) as the original calibration-based approach has
been tested and used in well-established projects, e.g., tboot,
Linux kernel and GRUB2.

In our test machine, we get N.TSC values roughly between
3494388 and 3504892 across multiple calibration attempts
(error ±0.003ms). Instead of taking an average of the cal-
ibrated values, we use the actual N.TSC value right before
each measurement to calculate the elapsed milliseconds, as
per-measurement calibration reflects real-time characteristics.
We perform each measurement 15 times and use the R project
to calculate statistics.
Tboot. The choice of using tboot (as opposed to dealing with
TXT with custom code) is justified by the fact that it has
undergone sufficient public/expert scrutiny and thus is more
reliable especially for the crucial TXT-handling logic. It also
introduces an apparently acceptable level of latency.

By default, tboot enables debugging (to VGA, serial port
or memory), which slows it down significantly, taking 30
seconds or more to complete. We disable debugging by pass-
ing necessary arguments. Our 15 independent measurements
demonstrate coherent execution times: mean 1611.20ms, me-
dian 1611.96ms, standard deviation (sd) 6.08.
DL-distance-based Gracewipe-XD. User response time, such
as password typing, is excluded from our measurement, since
it is also needed for regular FDE. We hardcode the user
input corresponding to each scenario for measuring only the
execution time. We count from the point where control is
taken over from tboot to the point where TrueCrypt is about
to be loaded. Our attempts to measure the DL-distance-based
scheme result in an average of 591.16ms, median of 589.71ms
and standard deviation of 7.74.
The basic Gracewipe. As the basic design tries to unlock the
three defined indices in sequence until a success, we separately
time the three cases: (1) Success at the first index (including

deletion, if it stores PD): mean 646.83ms, median 645.98ms,
and sd 2.81. (2) Success at the first index (excluding deletion):
mean 560.21ms, median 558.90ms, sd 3.78. (3) Success at
the second index: mean 616.81ms, median 617.16ms, and sd
3.47. (4) Success at the third index: mean 746.97ms, median
743.40ms, and sd 10.61.
Promptness of deletion. We also measure the duration of
the deletion operation (releasing and overwriting an NVRAM
index). Over the 15 attempts, we found that deletion takes
about 87ms (mean 86.62 and median 87.05), with a very small
deviation (sd 1.39), supporting our claim for a quick deletion.

In summary, the overall latency introduced by Gracewipe is
between 2 and 2.5 seconds.

VII. GENERALIZED WORKFLOW AND COMPARISON

Different password and deletion schemes provide flexibility,
and can be used in different application scenarios. However,
the core Gracewipe features are always provided: plausible
user compliance, undetectable deletion trigger, risky guessing
and verifiability. In this section, we provide a generalized
workflow for Gracewipe variants and compare them in terms
of security benefits and ease of use.
Generalized workflow. At deployment time, in addition to
setting up secrets (KH, KN), according to the actual variant of
Gracewipe in use, the user defines corresponding parameters
(thresholds, rules, or a custom dictionary). Each time the
system is booted into Gracewipe in a TXT session (loaded
by GRUB and tboot). The user is prompted for a password.
The difference of Gracewipe variants is reflected in the eval-
uation of the entered password, which eventually produces
an outcome (KN, KH, or deletion). Thereafter, the system
is unlocked, or a quote is generated for later verification if
deletion is triggered.

In normal operations, the user chooses to enter PN or PH,
which unlocks KN for the decoy system or KH for the hidden
system, respectively. If she mistypes or misremembers the
password, the Gracewipe variant in use determines to what
extent she can avoid triggering the deletion. When the user is
coerced, she can be forced to provide a list of valid password,
the number of which depends on the password scheme used.
Comparison. Table I summarizes several security and ease-of-
use features of different deletion triggering/password schemes.

Large Deletion Space denotes the availability of many
plausible deletion passwords that the user can reveal to pretend
compliance. The basic Gracewipe only supports one or a
few deletion passwords; the counter-based and misremember-
tolerant variants are used with other schemes, and do not offer
this property alone.

Deletion triggers/password schemes Large
Deletion Space

High
Guessing Risk Typo-tolerant Reduced

Accidental Deletion
Non-RAM

Secrets
Gracewipe Single/few deletion passwords

Counter-based (add-on) — — —
DL-distance-based
Pattern-based #
Misremember-tolerant (add-on) — — —

Gracewipe-XD

Small-dictionary # #

TABLE I: Comparison of Gracewipe password schemes. Keys: (offers the feature); # (partially offers the feature);
— (scheme-dependent, “add-ons” may not be evaluated alone for certain properties); blank (lacks the feature).

11

High Guessing Risk represents a relatively high probability
of triggering deletion with a guessed password. For the basic
Gracewipe, it is just a few out of a large password space. Other
schemes offer this feature by either rate-limiting (the counter-
based one), or having a large deletion password space.

Typo-tolerant means the scheme tolerates user typos. This
feature can be achieved either by using static passwords
(assuming they are not close in terms of edit distance), or
carefully managing the password distribution (e.g., greater
distance between PDs and PHs). For the pattern-based scheme,
typo tolerance is determined by the defined pattern.

Reduced Accidental Deletion denotes reduced risk from
accidental deletion, e.g., mistakenly typing PD instead of
PH. Schemes with fixed PD (s), e.g., the basic Gracewipe,
obviously do not offer this feature. PDs are not predefined
in the DL-distance and pattern-based schemes; however, mis-
remembering PH or the pattern can still trigger accidental
deletion. Small-dictionary partially tolerates misremembering,
when at least one segment of a misremembered passphrase is
found in the dictionary. The misremember-tolerant add-on can
reduce the risk of accidental deletion in any variant.

Non-RAM Secrets indicates that plaintext e.g., PH, custom
dictionary, are not exposed to the system memory. Although
the feasibility of cold boot attacks is arguably low (recall
that DMA attacks are already prevented by TXT), due to
the very-short in-RAM password exposure period, avoiding
plaintext secrets in memory is a better design choice. The
basic Gracewipe’s password evaluation is entirely TPM-bound.
In contrast, the DL-distance-based scheme loads PH and
the pattern-based scheme loads the pattern (e.g., a regex)
in memory at evaluation-time. The small-dictionary scheme
can partially avoid loading secrets in memory, if the custom
dictionary is unlocked chunk by chunk to be matched with
the typed passphrase (at the cost of performance), so that at a
specific time only a small portion of the dictionary is in RAM.

VIII. SECURITY ANALYSIS

In this section, we analyze possible attacks that may af-
fect the correct functionality of Gracewipe. Note that, the
verifiability of Gracewipe’s execution comes from a regular
TPM attestation process. Since the good values (publicly
available) only rely on Intel’s SINIT modules, tboot binaries
and Gracewipe, as long as the PCR values (via quoting) are
verified to match them, it can be guaranteed that the desired
software stack has been run. All Gracewipe variants assume
that TPM chips are immune to known physical attacks; we
briefly discuss several (historical) attacks on TPM in the NDSS
version [1] (omitted here).
(a) Evil-maid attacks. In 2009, Rutkowska demonstrated the
possibility of an evil-maid attack [30] (also termed as bootkit
by Kleissner [31] in a similar attack) against software-based
FDEs. The key insight is that the MBRs must remain unen-
crypted even for FDE disks, and thus can be tampered with.
We consider two situations directly applicable to Gracewipe:
1) In normal operation (i.e., not under duress), the user may
expose her password for the hidden system (PH). As soon as
such an attack is suspected (e.g., when PH fails to unlock the
hidden volume), users must reinitialize Gracewipe, and change

PH (and other attempted passwords); note that, the user is still
in physical control of the machine to reset it, or physically
destroy the data. 2) Under duress, we assume that the user
avoids revealing PH in any case. However, the adversary may
still learn valid PN/PDs as entered by the user without the risk
of losing the data (due to the lack of Gracewipe protection).
The use of multiple valid PDs can limit this attack. Note that
if an attacker copies encrypted hidden data, and then collects
the hidden password through an evil-maid attack, the plaintext
data will still remain inaccessible to the attacker due to the
use of TPM-bound secrets (see under “Sealing in NVRAM” in
Section III). The attacker must steal the user machine (at least,
the motherboard and disk) and launch the evil-maid attack
through a look-alike machine. Existing mechanisms against
evil-maid attacks, e.g., MARK [49], can also be integrated
with Gracewipe.
(b) Undetectable deletion trigger. As discussed under “Seal-
ing in NVRAM” in Section III, sealing prevents guessing
attacks without risking key deletion. Sealing also prevents
an attacker from determining which user-entered passwords
may trigger deletion, before the actual deletion occurs. If the
adversary alters Gracewipe, any password, including the actual
deletion password, will fail to unseal the hidden volume key
from NVRAM. Since the deletion indicator lies only within
the sealed data in NVRAM, the adversary will be unable to
detect whether an entered password is for deletion or not (e.g.,
by checking the execution of a branch instruction triggered by
the deletion indicator).
(c) Quoting for detecting spoofed environment. Currently,
we generate a quote only in the case of secure deletion.
However, in normal operations, the user may want to discern
when a special type of evil-maid attack has happened, e.g.,
when the whole software stack is replaced with a similar
environment (e.g., OS and applications). For this purpose,
we can generate a quote each time Gracewipe is run and
store it in NVRAM. By checking the last generated quote
value, the user can detect any modifications to Gracewipe. In
both secure deletion and normal operation, the selection of a
proper nonce is required. We currently support both arbitrary
user-chosen strings and timestamps as nonces. Nevertheless,
the use of a timestamp is susceptible to a pre-play attack,
where one party can approximately predict the time of the
next use, and pre-generate a quote while actually running an
altered binary. This is feasible because the malicious party has
physical access, and thus, is able to use TPM to sign the well-
known good PCR values for Gracewipe and the timestamp
he predicts. Therefore, for spoofed environment detection,
we recommend the use of user-chosen strings during quote
generation, although it requires user intervention.
(d) Booting from non-Gracewipe media. The attacker may
try to bypass Gracewipe by booting from other media. For
an SED-based implementation, such attempts cannot proceed
(i.e., the disk cannot be mounted). Even if he can mount
the disk, e.g., with a copy of Gracewipe-unaware TrueCrypt,
he must use the unmodified version of Gracewipe to try
passwords that are guessed or extracted from the user (e.g.,
under coercion), as TrueCrypt volumes are now encrypted

12

with long random keys (e.g., 256-bit AES keys), as opposed
to password-derived keys. Brute-forcing such long keys is
assumed to be infeasible even for state-level adversaries.
(e) User diligence. We require users to understand how se-
curity goals are achieved in Gracewipe, and diligently choose
which password to use depending on a given context. If the
deletion password is entered accidentally, the protected data
will be lost without any warning, or requiring any confirma-
tion. Note that, we do not impose any special requirement
on password choice; i.e., users can choose any generally-
acceptable decent passwords (e.g., 20 bits of entropy may
suffice). We do not mandate strong passwords, as the adversary
is forced to guess passwords online, and always faces the risk
of guessing the deletion password. Also, the user must reliably
destroy her copy of the TrueCrypt keys when passing them to
configure TrueCrypt. We can automate this key setup step at
the cost of enlarging the trusted computing base. However,
we believe that even if the whole process is without any user
intervention, the adversary may still suspect the victim to have
another copy of the key or the confidential data. Here we only
consider destroying the copy that the adversary has captured.

IX. RELATED WORK

Solutions related to secure deletion have been explored
extensively both by the research community and the industry;
see e.g., the recent survey [50]. However, we are unaware
of solutions that target verifiability of the deletion procedure,
and unobservability and indistingushability of the triggering
mechanism—features that are particularly important in the
threat model we assumed. Here we summarize proposals
related to secure deletion and coercive environment.
Limited-try approach [21]. In a blog post, Rescorla [21]
discusses technical and legal problems of data protection under
coercion. Limitations of existing approaches including deni-
able encryption (such as TrueCrypt hidden volumes), verifiable
destruction (Vanish [51]) have been discussed. He also pro-
poses possible solutions, one of which is based on leveraging
a hardware security module (HSM) with a limited-try scheme.
The HSM will delete the encryption key if wrong keys are
entered a limited number of times. As mentioned [21], such
a system cannot be software-only as the destruction feature
can be easily bypassed. Essentially, Gracewipe combines TPM
and TXT to achieve HSM-like guarantees, i.e., isolated and
secure execution with secure storage (albeit limited tamper-
resistance), without requiring HSMs.
Secure deletion survey [50]. Reardon et al. provide a com-
prehensive survey of existing solutions for secure deletion of
user data on physical media, including flash, and magnetic
disks/tapes. Solutions are categorized and compared based on
how they are interfaced with the physical media (e.g., via user-
level applications, file system, physical/controller layers), and
the features they offer (e.g., deletion latency, target adversary
and device wear). However, SED-based solutions were not
evaluated, which is of significance to secure deletion. The
authors also presented a taxonomy of adversaries that a secure
deletion approach is faced with. The adversary in Gracewipe
can be classified as bounded coercive as he can detain the
victim, and keep the device for as long as he needs with all

hardware tools available, but cannot decrypt the Gracewipe-
protected data without the proper key. Reardon et al. also
discuss a few solutions involving encrypting user data and
making it inaccessible by deleting the keys. The authors sug-
gested to be more cautious about such cryptographic deletion
and consider the adversary’s true computational bound (which
would be rather high for a state-level adversary).
STARK and MARK [32]. Müller et al. propose a protocol for
mutual authentication between humans and computers, arguing
that forged bootloader can trick the user to leak her password
(cf. [30], [31]). Even with TPM sealing, attacks aiming to just
obtain the user secret can still occur, as demonstrated by the
tamper-and-revert attack to BitLocker [52]. STARK allows the
user to set up a sealed user-chosen message, which should be
unsealed by the machine before it authenticates the user. The
user can then verify if it is her message. Each time a new
message is set by the user to maintain the freshness, hence
its name monce. Its improved version MARK uses a special
USB device as secure storage to bootstrap the process credibly.
Gracewipe may be extended with such techniques to defeat
evil-maid attacks.
DriveCrypt Plus Pack [53]. DCPP can be considered the
closest prior art to Gracewipe. It is a closed-source FDE
counterpart of TrueCrypt, with the support for deniable storage
(hidden volumes), destruction passwords and security by ob-
fuscation. A user can define one or two destruction passwords
(when two are defined, both must be used together), which,
if entered, can immediately cause erasure of some regions
of the hard drive, including where the encryption keys are
stored. What DCPP is obviously still missing is a trusted
environment for deletion trigger, and measurement for the
deletion environment. The adversary may also alter DCPP
(e.g., through binary analysis) to prevent the deletion from
happening. More seriously, the adversary can clone the disk
before allowing any password input.

X. CONCLUDING REMARKS

We consider a special case of data security: making data per-
manently inaccessible when under coercion. We want to enable
such deletion with additional guarantees: (1) verification of the
deletion process; (2) indistingushability of the deletion trigger
from the actual key unlocking process; and (3) no password
guessing without risking key deletion. If key deletion occurs
through a user supplied deletion password, the user may face
serious consequences (legal or otherwise). Therefore, such a
deletion mechanism should be used only for very high-value
data, which must not be exposed at any cost, and where even
accidental deletion is an acceptable risk (i.e., the data may be
backed up at locations beyond the adversary’s reach). We use
TPM for secure storage and enforcing loading of an untam-
pered Gracewipe environment. For secure and isolated execu-
tion, we rely on Intel TXT. Millions of consumer-grade ma-
chines are already equipped with a TPM chip and TXT/SVM
capable CPU. Thus, Gracewipe can immediately benefit its
targeted user base. The source code of our prototypes can be
obtained via: https://madiba.encs.concordia.ca/software.html.

https://madiba.encs.concordia.ca/software.html

13

REFERENCES

[1] L. Zhao and M. Mannan, “Gracewipe: Secure and verifiable deletion
under coercion,” in NDSS’15, San Diego, CA, USA, Feb. 2015.

[2] R. Anderson, R. Needham, and A. Shamir, “The steganographic file
system,” in International Workshop on Information Hiding (IH’98),
Portland, OR, USA, 1998.

[3] TrueCrypt.org, “Free open source on-the-fly disk encryption software,”
version 7.1a (July 2012). http://www.truecrypt.org/.

[4] 16s.us, “TCHunt,” tool for detecting encrypted hidden volumes (ver-
sion: 1.6, release date: Jan. 29, 2014). https://github.com/stephenjudge/
TCHunt.

[5] M. J. Ranum, “Cryptography and the law...” newsgroup post at
sci.crypt (Oct. 16, 1990). https://groups.google.com/forum/#!msg/sci.
crypt/W1VUQlC99LM/ANkI5zdGQIYJ.

[6] CNet.com, “Turkish police may have beaten encryption key out of TJ
Maxx suspect,” news article (Oct. 24, 2008).

[7] ArsTechnica.com, “Drug dealer: Cops leaned me over 18th floor balcony
to get my password,” news article (Apr. 22, 2015).

[8] SFGate.com, “Stockton mayor was briefly detained on return flight from
China,” news article (Oct. 2, 2015).

[9] TheRegister.co.uk, “Ex-Microsoft bug bounty dev forced to decrypt
laptop for Paris airport official,” news article (Jan. 6, 2015).

[10] A. D. McDonald and M. G. Kuhn, “StegFS: A steganographic file system
for Linux,” in International Workshop on Information Hiding (IH’99),
Dresden, Germany, 1999.

[11] Dban.org, “Darik’s boot and nuke,” open-source tool for hard-drive disk
wipe and clearing. http://www.dban.org.

[12] P. Gutmann, “Secure deletion of data from magnetic and solid-state
memory,” in USENIX Security Symposium, San Jose, CA, USA, Jul.
1996.

[13] M. M. G. Slusarczuk, W. T. Mayfield, and S. R. Welke, “Emergency
destruction of information storing media,” institute for Defense Analyses
Report R-321 (Dec. 1987). http://www.dtic.mil/cgi-bin/GetTRDoc?AD=
ADA202147.

[14] D. Boneh and R. J. Lipton, “A revocable backup system,” in USENIX
Security Symposium, San Jose, CA, USA, Jul. 1996.

[15] G. D. Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson, “How
to forget a secret (extended abstract),” in Symposium on Theoretical
Aspects of Computer Science (STACS’99), Trier, Germany, Mar. 1999.

[16] J. Reardon, S. Capkun, and D. Basin, “Data node encrypted file
system: Efficient secure deletion for flash memory,” in USENIX Security
Symposium, Bellevue, WA, USA, Aug. 2012.

[17] Seagate.com, “Protect your data with Seagate secure self-
encrypting drives,” http://www.seagate.com/ca/en/tech-insights/
protect-data-with-seagate-secure-self-encrypting-drives-master-ti/.

[18] HGST.com, “Data center and enterprise storage solutions,” https://www.
hgst.com/sites/default/files/resources/DC-Ent-StorageSolutions-BR.pdf.

[19] ISO.org, “ISO/IEC FDIS 27040: Information technology – secu-
rity techniques – storage security,” target publication: Apr. 21,
2015. http://www.iso.org/iso/home/store/catalogue tc/catalogue detail.
htm?csnumber=44404.

[20] TheRegister.co.uk, “Computing student jailed after failing to hand over
crypto keys,” news article (July 8, 2014).

[21] E. Rescorla, “Protecting your encrypted data in the face of coercion,”
blog post (Feb. 11, 2012). http://www.educatedguesswork.org/2012/02/
protecting your encrypted data.html.

[22] P. Gupta and D. Gao, “Fighting coercion attacks in key generation using
skin conductance,” in USENIX Security Symposium, Washington, DC,
USA, Aug. 2010.

[23] H. Bojinov, D. Sanchez, P. Reber, D. Boneh, and P. Lincoln, “Neuro-
science meets cryptography: Designing crypto primitives secure against
rubber hose attacks,” in USENIX Security Symposium, Bellevue, WA,
USA, Aug. 2012.

[24] J. Clark and U. Hengartner, “Panic passwords: Authenticating under
duress,” in USENIX Workshop on Hot Topics in Security (HotSec’08),
San Jose, CA, USA, Jul. 2008.

[25] Gnu.org, “The multiboot specification,” http://www.gnu.org/software/
grub/manual/multiboot/multiboot.html.

[26] Intel.com, “Trusted boot (tboot),” version: 1.8.0. http://tboot.sourceforge.
net/.

[27] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble, T. Kohno, and
B. Schneier, “Defeating encrypted and deniable file systems: TrueCrypt
v5.1a and the case of the tattling OS and applications,” in USENIX
HotSec’08, San Jose, CA, USA, 2008.

[28] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we

remember: Cold boot attacks on encryption keys,” in USENIX Security
Symposium, San Jose, CA, USA, 2008.

[29] T. Müller, F. C. Freiling, and A. Dewald, “TRESOR runs encryption
securely outside RAM,” in USENIX Security Symposium, San Francisco,
CA, USA, Aug. 2011.

[30] J. Rutkowska, “Evil maid goes after TrueCrypt!” online re-
port (Oct. 16, 2009). http://theinvisiblethings.blogspot.ca/2009/10/
evil-maid-goes-after-truecrypt.html.

[31] P. Kleissner, “Stoned bootkit,” Black Hat USA (July 2009).
http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/
BHUSA09-Kleissner-StonedBootkit-PAPER.pdf.

[32] T. Müller, H. Spath, R. Mäckl, and F. C. Freiling, “STARK tamperproof
authentication to resist keylogging,” in Financial Cryptography and Data
Security (FC’13), Okinawa, Japan, Apr. 2013.

[33] M. Frank, T. Hwu, S. Jain, R. Knight, I. Martinovic, P. Mittal, D. Perito,
and D. Song, “Subliminal probing for private information via EEG-
based BCI devices,” tech-report (Dec. 20, 2013). http://arxiv.org/abs/
1312.6052.

[34] T. Bonaci, J. Herron, C. Matlack, and H. J. Chizeck, “Securing the
exocortex: A twenty-first century cybernetics challenge,” in IEEE Con-
ference on Norbert Wiener in the 21st Century, Boston, MA, USA, Jun.
2014.

[35] A. Winter, “The making of “truth serum,” 1920-1940,” Bulletin of the
History of Medicine, vol. 79, no. 3, pp. 500–533, 2005.

[36] Salon.com, “James Holmes and the ethics of “truth serum”: Putting the
Aurora shooter through a narcolanalytic interview won’t provide truth
or prove sanity,” news article (Mar. 13, 2013).

[37] R. Wojtczuk and J. Rutkowska, “Attacking Intel trusted
execution technology,” Black Hat DC (Feb. 2009). http:
//www.blackhat.com/presentations/bh-dc-09/Wojtczuk Rutkowska/
BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf.

[38] R. Wojtczuk, J. Rutkowska, and A. Tereshkin, “Another way to
circumvent Intel trusted execution technology,” Invisible Things
Lab, Tech. Rep., 2009, http://invisiblethingslab.com/resources/misc09/
Another%20TXT%20Attack.pdf.

[39] Intel.com, “SMI transfer monitor (STM) user guide,” revision 1.00
(Aug. 2015). https://firmware.intel.com/sites/default/files/STM User
Guide-001.pdf.

[40] AMD.com, “AMD64 architecture programmer’s manual volume 2:
System programming,” revision 3.25 (June 2015). http://support.amd.
com/TechDocs/24593.pdf.

[41] “TrouSerS: The open-source TCG software stack,” version: 0.3.8. http:
//trousers.sourceforge.net/.

[42] Intel 64 and IA-32 Architectures Software Developer’s Manual, In-
tel.com, June 2014, volume 2C: Instruction Set Reference.

[43] Intel TXT Software Development Guide - Measured Launched Environ-
ment Developer’s Guide, Intel.com, May 2014.

[44] TPM Main: Part 1 Design Principles, Trusted Computing Group,
specification Version 1.2, Level 2 Revision 116 (March 1, 2011).

[45] G. V. Bard, “Spelling-error tolerant, order-independent pass-phrases via
the damerau-levenshtein string-edit distance metric,” in Australasian
Information Security Workshop (AISW’07), Ballarat, Australia, 2007.

[46] R. Chatterjee, J. Bonneau, A. Juels, and T. Ristenpart, “Cracking-
resistant password vaults using natural language encoders,” in IEEE
Symposium on Security and Privacy, San Jose, CA, USA, May 2015.

[47] M. Gruhn and T. Müller, “On the practicability of cold boot attacks,”
in Conference on Availability, Reliability and Security (ARES’13), Re-
gensburg, Germany, Sep. 2013.

[48] R. Carbone, C. Bean, and M. Salois, “An in-depth analysis of the cold
boot attack: Can it be used for sound forensic memory acquisition?”
Jan. 2011, Technical Memorandum (TM 2010-296), Defence Research
and Development Canada (DRDC), Valcartier.

[49] J. Götzfried and T. Müller, “Mutual authentication and trust bootstrap-
ping towards secure disk encryption,” ACM Transactions on Information
and System Security (TISSEC), vol. 17, no. 2, pp. 6:1–6:23, 2014.

[50] J. Reardon, D. Basin, and S. Capkun, “SoK: Secure data deletion,” in
IEEE Symposium on Security and Privacy, San Francisco, CA, USA,
May 2013.

[51] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy, “Vanish: Increasing
data privacy with self-destructing data,” in USENIX Security Symposium,
Montreal, Canada, Aug. 2009.

[52] S. Türpe, A. Poller, J. Steffan, J.-P. Stotz, and J. Trukenmüller, “At-
tacking the BitLocker boot process,” in Technical and Socio-economic
Aspects of Trusted Computing (Trust’09), Oxford, UK, Apr. 2009.

[53] SecurStar.com, “DriveCrypt Plus Pack,” http://www.securstar.biz/
drivecrypt-plus-pack.html.

http://www.truecrypt.org/
https://github.com/stephenjudge/TCHunt
https://github.com/stephenjudge/TCHunt
https://groups.google.com/forum/#!msg/sci.crypt/W1VUQlC99LM/ANkI5zdGQIYJ
https://groups.google.com/forum/#!msg/sci.crypt/W1VUQlC99LM/ANkI5zdGQIYJ
http://www.dban.org
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA202147
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA202147
http://www.seagate.com/ca/en/tech-insights/protect-data-with-seagate-secure-self-encrypting-drives-master-ti/
http://www.seagate.com/ca/en/tech-insights/protect-data-with-seagate-secure-self-encrypting-drives-master-ti/
https://www.hgst.com/sites/default/files/resources/DC-Ent-StorageSolutions-BR.pdf
https://www.hgst.com/sites/default/files/resources/DC-Ent-StorageSolutions-BR.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=44404
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=44404
http://www.educatedguesswork.org/2012/02/protecting_your_encrypted_data.html
http://www.educatedguesswork.org/2012/02/protecting_your_encrypted_data.html
http://www.gnu.org/software/grub/manual/multiboot/multiboot.html
http://www.gnu.org/software/grub/manual/multiboot/multiboot.html
http://tboot.sourceforge.net/
http://tboot.sourceforge.net/
http://theinvisiblethings.blogspot.ca/2009/10/evil-maid-goes-after-truecrypt.html
http://theinvisiblethings.blogspot.ca/2009/10/evil-maid-goes-after-truecrypt.html
http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-Kleissner-StonedBootkit-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-Kleissner-StonedBootkit-PAPER.pdf
http://arxiv.org/abs/1312.6052
http://arxiv.org/abs/1312.6052
http://www.blackhat.com/presentations/bh-dc-09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf
http://www.blackhat.com/presentations/bh-dc-09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf
http://www.blackhat.com/presentations/bh-dc-09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf
https://firmware.intel.com/sites/default/files/STM_User_Guide-001.pdf
https://firmware.intel.com/sites/default/files/STM_User_Guide-001.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://trousers.sourceforge.net/
http://trousers.sourceforge.net/
http://www.securstar.biz/drivecrypt-plus-pack.html
http://www.securstar.biz/drivecrypt-plus-pack.html

14

Lianying Zhao is a Ph.D. candidate at the Concor-
dia Institute for Information Systems Engineering,
Concordia University, Montreal. He received his
Master’s degree in Tianjin University, China. He
has over six years of experience in the industry
prior to his Ph.D. studies, mainly on mainframe and
embedded systems. He currently works on system
and hardware-related security, and authentication.

Mohammad Mannan is an Associate Professor
at the Concordia Institute for Information Systems
Engineering, Concordia University, Montreal. His
research interests lie in the area of Internet and sys-
tems security, with a focus on solving high-impact
security and privacy problems of today’s Internet. He
is involved in several well-known conferences (e.g.,
program committee: ACM CCS 2016, ACSAC 2014,
USENIX Security 2010; program co-chair: ACM
SPSM 2016), and journals (e.g., ACM TISSEC,
IEEE TDSC, IEEE TIFS).

	Introduction and Motivation
	Goals and Threat Model
	Goals and terminology
	Threat model and assumptions

	Gracewipe Design
	Overview and disk layout
	Execution steps
	Sealing in NVRAM
	Password management

	Implementation with TrueCrypt
	Implementing the wiper
	Adapting TrueCrypt
	Orchestrating components
	Windows and TPM issues

	Extended unlocking schemes
	Existing panic password schemes
	Counter-based deletion trigger
	Edit-distance-based password scheme
	Other possible schemes

	Performance overhead
	Generalized workflow and comparison
	Security Analysis
	Related Work
	Concluding remarks
	References
	Biographies
	Lianying Zhao
	Mohammad Mannan

