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Abstract—Computer hardware is usually perceived as more secure than software. However,
recent trends lead us to reexamine this belief. We draw attention to the “firmwarization” of
hardware and argue for revisiting the role of hardware and software in systems security.

TRADITIONALLY, computer systems can be
thought of as composed of two types of compo-
nents: hardware and software. Hardware refers to
the physical components that perform a fixed set
of operations. Software on the other hand, defines
logical components, instantiated as data and in-
structions, which can specify arbitrary sequences
of hardware operations, as well as inputs to those
operations. A function can be implemented using
a various mixes of hardware and software compo-
nents (or even entirely in hardware). The mix of
hardware and software can have implications on
certain properties of the function implementation
(e.g., performance or security).
Hardware Security. Hardware has been deemed
to be the safeguard for security-sensitive op-
erations for decades. This is reflected in the
longstanding use of hardware security modules
(HSMs, such as the tamper-evident/resistant IBM
Cryptocards) for cryptoprocessing, as well as the
more recent interest in securing sensitive tasks
with trusted computing technologies like Intel
SGX and ARM TrustZone.

In academia, hardware security has also at-
tracted significant attention from researchers. A
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quick search on Google Scholar returns at least
1,750 academic papers with the title containing
both “hardware” and “security” as of the time
of writing. While this is a conservative under-
approximation of the actual number of such pa-
pers (as it only checks the title), and regardless
of whether these papers propose a larger role
of hardware in security, or seek to examine the
vulnerability of hardware to security attacks, the
sheer number informally illustrates that the se-
curity community has a strong interest in the
relationship between computer hardware and se-
curity. Another recent trend is the implementation
of hardware mechanisms to address well-known
security problems. For instance, a survey [8] lists
21 hardware-based architectures to ensure control
flow integrity (CFI, the correct flow of execution
of a program). This implies that there is an
underlying belief that hardware implementations
correlate well with better security properties in
computing computing systems.

The Perceived Security Benefits of
Hardware

We begin by examining where this belief
in the security benefits of hardware may have
originated. Intuitively, one may assume that the
feeling of security may naturally stem from the
possession and physical existence of hardware.
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Hardware switches provide visible assurance of
operation integrity, e.g., a state is set and its state
remains unambiguously obvious. Similarly, users
can be confident that they possess and are in
control of information and capabilities inherent in
detachable devices like USB dongles and drives.
Hardware components on first examination, ap-
pear simpler and more restricted in function
than many software components. Components,
like hard drives store data and little else, while
keyboards provide a means to input information
and commands. Indeed, the physical nature of
hardware means that defects in hardware are not
as easily fixed after they are shipped to customers,
driving hardware designers to be more conser-
vative and thoughtful in their designs. All these
properties contribute to an overall feeling of better
security and assurance in hardware over software.

However, if we set aside assumptions about
the conscientiousness of hardware and software
designers, as well as possible mental biases to-
wards physical versus logical components, and
instead focus on the functional properties that dis-
tinguish hardware and software implementations
from a security perspective, we can contemplate
two that appear to stand out: 1) immutability and
2) privilege.

We define immutability as the ability of a
function’s properties to resist being changed from
those in their original intended design. Being
physically implemented in circuits and transistors,
hardware has an “intrinsic” immutability, to it—
the functions implemented in hardware cannot be
simply changed by altering some bits in memory.
If an attacker wants to modify the function of
hardware, they must physically change it, imply-
ing the need for physical access to the victim.
This is comforting, as physical changes have a
higher chance of being tamper-evident.

Such immutability can also be considered a
benefit of the fact that hardware does not need
to implement a “Turing machine”. Hardware has
an inherent bias towards the “Economy of Mech-
anism” [10]—because hardware has a physical
existence, there is a penalty for extra or unused
functionality, so there is a strong incentive to
avoid it. Therefore, hardware logic often imple-
ments just enough functionality to execute pre-
scribed tasks without enabling arbitrary opera-
tions. This naturally limits the damage that can be

done if hardware is compromised or defective—a
hardware switch in a circuit may be maliciously
changed from off to on, but not reprogrammed
to be something else substantially different. By
contrast, software generally runs on a Turing-
complete execution engine (e.g., the CPU), which
can be programmed to do something far from the
intended functionality of the original software.
So if compromised or defective, software may
intrinsically give an attacker access to the Turing-
complete environment where arbitrary functions
can be performed.

We define privilege as the ability to observe
and control the operations of another component.
This definition has a subtle difference from the
software definition of privilege (i.e. kernel vs
user) as higher-privilege software generally is
capable of a super-set of operations over lower-
privilege software. However, the privilege of
hardware over software is different in that hard-
ware and software are not capable of the same set
of operations. Yet, where it is comparable is that
the additional operations that privileged software
has usually include the ability to control (i.e.
start, stop and interrupt), as well as observe (read
and write) the execution state of unprivileged
software. In the same way, hardware making up
the execution engine of software, has the same
ability to control and observe the state of any
software it runs.

Modern computers all share the layered con-
struction starting from the hardware/firmware,
VM hypervisor, operating system (OS), to ap-
plications (see Figure 1). A hypervisor is secure
against the OS kernel, which in turn is secure
against applications. Hardware sits at the most
privileged position in this stack, and as such is
naturally secured against vulnerabilities in and at-
tacks coming from the lower-privileged software
layers.

Hardware, Firmware, and Software
So far we have discussed a high-level ab-

stract model of computing system implementa-
tion where all components are all either entirely
hardware or software. However, as the reader may
have guessed, the view of computing systems pro-
moted by this article is not so simple. There actu-
ally, exists a third, hybrid, type of implementation
for computational functions called “firmware”.
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Figure 1. The layered construction of a computing
device, and what is commonly considered as hard-
ware.

The term firmware has existed almost as long as
computer hardware has, first coined by Ascher
Opler [4] in the 1960s. Firmware shares some
properties with software, in that it is implemented
as software instructions that execute on a general
purpose, Turing-complete hardware processor.

To better understand hardware, firmware and
software, we compare the three using 4 proper-
ties: immutability, privilege, efficiency and cost,
summarized in Table 1.

Immutability: As defined earlier, immutabil-
ity characterizes whether the functionality of a
component can be altered. While the immutabil-
ity of hardware is intrinsic, the immutability of
firmware and software is not, and typically must
be enforced by some other component (either
hardware or software). For example, the address
space of firmware typically is blocked from ac-
cess by applications, and in many cases, even
the OS by either a hardware reference monitor,
or some combination of hardware and software
reference monitors. From this, we argue that only
hardware is truly immutable, while firmware and
software can be either intentionally mutable by
certain components, or mutable as a result of
design or implementation flaws.

We exclude supply chain attacks in our discus-
sion, because when products are compromised be-
fore acquired by the user, immutability no longer

applies. Even in that case, the compromised hard-
ware remains immutable, e.g., hardware Trojans
inserted by the designer or manufacturer usually
cannot be removed by firmware/software.

Privilege: Also previously defined, privilege
indicates the ability of a higher-privileged com-
ponent to observe and control the execution of a
lower-privileged component. Because all software
must execute on hardware, hardware inherently
has higher-privilege than firmware or software.
However, it is often the case that firmware exists
on the hardware side of the hardware-software
interface, and as such has privileges over software
such as the OS kernel or applications. Thus,
we order privileges with hardware at the top,
firmware in the middle, and, finally, software at
the bottom.

Efficiency: Efficiency defines how much per-
formance an implementation provides as a func-
tion of some resource (electrical power for ex-
ample). Hardware implementations are generally
more power efficient than software, and provide
better performance for similar power consump-
tion. While both firmware and software are less
efficient than pure hardware blocks, firmware of-
ten executes closer to the hardware, and may have
access to special hardware functions or facilities
that may make it more efficient than software.
For example, CPU firmware (i.e. microcode) is
not affected by context switches or OS scheduling
like regular application software.

Cost: Hardware in general has a fixed cost
with each system, while the incremental cost of
deploying software for each system is nearly zero.
As a result, systems that contain more specialized
hardware generally cost more to produce, which
translates into a higher cost for the end user to
purchase. This creates an intuitive trade-off that
nearly every computer engineer is aware of—
faster systems that use hardware accelerators cost
more.

Property Hardware Firmware Software

Immutability 3 7 7

Privilege Highest Middle Low

Efficiency High Middle Low

Cost High Low Low

Table 1. Comparison of properties.
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The Role of Firmware
Given the comparison in Table 1, one may

wonder why firmware was introduced in the first
place, as it seems to be superior to neither hard-
ware nor software in any property. One strong
reason for firmware, among others, is to main-
tain interoperability across a variety of computer
systems interfaces.

In short, interoperability means that different
implementations of components can work with
each other because the components all adhere
to a standard interface. However, implementing
that interface using varying mixes of hardware
and software allows manufacturers to create dif-
ferent products at different points in the cost-
efficiency spectrum. For example, all network
cards perform essentially the same function, but
more expensive faster network cards may contain
a variety of accelerators and off-load engines
that allow faster packet processing with lower-
power, and at the same time freeing up gen-
eral purpose compute cycles on the main CPU.
A similar example is specialized cryptographic
function accelerators. In some cases, functions
that are not performance-sensitive can always be
implemented in firmware. As these variants do
not affect the interface, they can be used inter-
changeably without changing software or other
hardware components.

Yet another important advantage that firmware
provides is the ability to update or patch hard-
ware either to provide enhanced features or ad-
dress defects. A variety of consumer devices
from webcams, to thermostats, to home routers
have the majority of their high-level functionality
implemented in firmware so that they can be
updated in the field and bring more value to the
end consumer. In fact, a key selling point for
some smartphone models is the length of time
that the vendor will continue to patch security
vulnerabilities in the smartphone firmware.

Hardware firmwarization
A key pillar of the security of hardware is

its immutability to software, which holds most
naturally when hardware is actually implemented
as hardware. However, in recent years, what is
traditionally thought of as hardware—the CPU,
hard drives and various other peripherals, are
increasingly taking on implementation charac-

teristics normally associated with software. As
hardware becomes increasingly complex, many of
these complex features are actually implemented
as firmware.

Baumann has stated that the hardware is the
new software [7], emphasizing the rapid and iter-
ative manner in which modern hardware features
are being implemented. Many modern hardware
“features” are actually implemented as firmware,
and they are often rolled out iteratively, i.e., SGX,
then SGX2. Rather than actually replacing the
components, defects in hardware can be patched
by changing the firmware. These characteristics
increasingly give hardware both the advantages
(i.e. flexibility, upgradeability) and disadvantages
(complexity, mutability) of software.

It is not uncommon to consider hardware and
firmware as a whole to be just hardware, as
illustrated in Figure 1. For instance, a blanket
statement such as “hardware-encrypted drives are
more secure than software full-disk encryption”
does not fully acknowledge nuances such as the
fact that hardware encryption implementations
often contain software (firmware) components.
What is worse, devices traditionally perceived as
“dumb” (i.e., not Turing-complete) when enriched
with firmware (i.e., introducing a general-purpose
processor) become Turing-complete, and if com-
promised, can perform functions never intended
in the original design. One example is keyboards,
as exemplified by an Apple keyboard turned into a
keystroke logger [5] using merely software tools.

How Firmwarized Hardware can Go
Wrong

When hardware functions are implemented
using firmware, the immutability of hardware is
impacted, weakening the security against attacks.
Indeed, in this section, we will examine some
hardware security failures from the past and see
how a common thread has emerged where at-
tackers unexpectedly modify functionalities im-
plemented in firmware. We will also show how
firmwarization and its security consequences are
prevalent across different computer components.
In our discussion we focus on two aspects: the
vulnerability itself, which leads to firmware com-
promise for arbitrary code execution, and the
harm that the compromise causes. We include
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vulnerabilities that may reside in 1) the firmware
code itself, e.g., buffer overflow, or 2) the environ-
ment where the firmware runs, which improperly
enforces firmware privilege and enables lower-
privilege software to compromise firmware. We
group vulnerabilities by the type of component it
affects, as shown in Figure 2, which illustrates
how firmware vulnerabilities have existed in a
plethora of system components, as well as the
broad range of time over which those vulnerabil-
ities have been found.

Input/output Devices

Computer peripherals, such as drives, key-
boards, mice and printers are usually seen as too
simple to be compromised and used for attack.
However, these devices have been increasingly
offering more and more functionality, often im-
plemented in firmware, which has led to vulner-
abilities.
Hard drives. Hard drives and solid-state drives
(SSDs), normally viewed as simple block de-
vices, actually contain quite a bit of firmware.
A recent analysis of the (in)security of to-
day’s Self-encrypting SSDs [6] discovered a
software-only firmware reflashing attack on Cru-
cial MX100/MX200 using some undocumented
vendor-specific commands (VSCs). This vulnera-
bility could allow an attacker to remotely1 and
stealthily intercept any data to/from the disk
without leaving traces on the host. Unlike regular
malware, the malicious code resides in firmware,
so even a full operating system re-installation
would not remove such malware. In 2013, Zad-
dach et al. [3] already demonstrated that a stealth
backdoor could be installed by software on an off-
the-shelf mechanical hard drive. Jeroen Domburg
(a.k.a. sprite tm)” also found the same vulnera-
bility independently in the same year.
NICs. Aside from hard disks, network interface
cards (NICs) are another front for firmware com-
promise. Back in 2006/2007, in the so-called
Project Maux Mk.I, Triulzi demonstrated a partial
proof-of-concept takeover of a Broadcom NIC
by modifying the firmware. In 2010, Duflot and
Perez then expanded this attack to take full con-

1We use remotely here to mean that they do not need physical
access, but may still need to perform a remote privilege escalation
on the local OS first.

trol of a computer by exploiting a vulnerability in
a Broadcom NetXtreme NIC. The vulnerability
was located in the firmware handling the ASF
protocol, an obscure protocol intended for remote
administration.

Video cards. Video cards also contain firmware
in a component called the Video BIOS (VBIOS)
which is loaded and executed on the CPU much
the same way that the regular system BIOS is.
There have been attempts to tweak the VBIOS
such as nvresolution [12] which added support
for better resolutions with framebuffer drivers.

Video cards can be co-opted to execute mali-
cious code that can evade traditional malware de-
tection. The Graphics Processing Unit (GPU) and
video memory (VRAM) provide a full execution
environment for malware, and the shared memory
with the CPU can allow for attacks. For example,
in 2013 researchers implemented a GPU-based
keylogger that peaked into the keyboard buffer
that is normally managed by the CPU.

Other devices. A variety of devices interface with
systems over platform buses such as PCI and
USB. Devices for these buses implement generic,
but complex functionality, such as automatic de-
vice discovery and configuration and arbitration
between different devices. This functionality, also
usually implemented in firmware, has also been
the source of a number of vulnerabilities. For
example, in 2006, Heasman explored the special
role of PCI expansion ROM (e.g., the VBIOS), a
piece of program as part of the device firmware
that can be loaded by the system OS during
initialization. Heasman discussed [13] how a PCI
card’s expansion ROM can be reflashed by mali-
cious software, due to lack of firmware signature
verification. The card can then be used to mount
various pre-boot attacks including subverting the
OS kernel when plugged into another computer.

Similarly, the plethora of USB devices exists
partially because the USB interface offers rich
and flexible functionality. This is a double-edge
sword as almost any type of devices can be
emulated from a USB device, as opposed to only
storage in the case of SATA (before the OS
is compromised). Nohl et al. demonstrated the
concept of BadUSB [14], where USB devices
can be reprogrammed to attack the host they are
plugged into. As an example, they were able
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Figure 2. Distribution of firmware across computer components. Grey area designates presence of firmware
and years indicate when a software-only compromise was reported.

to reprogram a USB device to emulate another
one, such as a keyboard, which when plugged-
in could send malicious keystrokes to the victim
machine. These vulnerabilities stem from the lack
of signature verification for USB firmware. This
means that malicious software on one machine
can use USB devices as a vector for infecting
other machines. For example, malware on one
machine can corrupt the firmware of a webcam or
USB drive, which can then compromise the next
machine the device is plugged into. The lack of
firmware verification is widespread—Nohl et al.
find that out of 52 chip families and 33 actual
devices only one chip family implemented any
form of defense.

These problems are further complicated by
the fact that users in general pay less attention
to patching and securing their peripherals than
traditional software systems such as the main sys-
tem OS and services. While most mainstream OS
and application software offer automatic updates
that keep these systems patched against known
vulnerabilities, firmware updates for peripherals

such as hard drives and Bluetooth/Wifi adapters
are both less frequent and user-driven, and the
overriding advice for such updates is to apply
only when there is an apparent need to, resulting
in a lower application rate of firmware updates.

CPU and Chipset

Chipset firmware. Excluding peripherals, older
PCs could be thought of as a CPU surrounded
by non-programmable parts on the motherboard.
The only vulnerable software running on such
a system would be the code running on the
CPU(s). However, this simplistic view of a com-
puter system no longer holds. For example, the
Intel Management Engine (ME) is a stand-alone
“computer” with its own OS, implemented in
the chipset of client PCs. The Intel ME powers
the Intel Active Management Technology (AMT)
suite of tools. When security vulnerabilities in
AMT and the ME came to light in 2017 (CVE-
2017-5689), it caused much alarm in the security
community, as it simultaneously became known
that both the ME and its associated security
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weaknesses might have been present since as
early as 2008.

Part of Intel AMT is an application (trust-
let) running in the ME environment, which en-
ables remote management of computers. This
highly-sensitive functionality was implemented
in firmware, which could be overwritten and
subverted. An attacker who does this could gain
control over a system remotely, regardless of what
software safeguards are in place in the operating
system. Moreover, once compromised, being in
a hardware-like position in the system, the Intel
ME enjoyed unchecked privileges over the rest
of the system, making it difficult to be sure
that any malicious code is removed. Security
researchers have been actively studying the Intel
ME since 2009. Tereshkin and Wojtczuk coined
the term ring -3 rootkits referring to the code they
injected to the ME with a privilege higher than
any software and other firmware of the computer.
The injection attack exploited a weakness in the
memory reclaiming mechanism in Intel CPUs
that allowed an improper memory remapping
that should have been disallowed. The memory
reclaiming that enabled the attack was intended
to allow system software to remap DRAM that
collides with physical address ranges mapped to
I/O devices. The original design of the memory
reclaiming mechanism neglected to take into ac-
count proper access control, such as checking for
memory used by the Intel ME.

Although Intel later fixed this remapping issue
and encrypted the ME memory in an attempt
to prevent further compromise of the ME isola-
tion, further vulnerabilities in the ME firmware
kernel (e.g., CVE-2017-5705,6,7) still lead to
firmware compromise that allowed arbitrary code
execution. Similar to the Intel ME, the Intel
IE (Innovation Engine) was introduced to the
Lewisburg chipset in 2017. Unlike ME that is
restricted to only run firmware deployed by Intel,
IE is intended for OEM uses, i.e., potentially
opening up the door for more chipset firmware
vulnerabilities.

For brevity, we do not discuss other types of
chipset firmware, such as the Baseboard Man-
agement Controller (BMC, similar to the Intel
ME, part of server motherboards for decades).
What these numerous examples demonstrate
is that chipsets, far from being simple non-

programmable parts on a motherboard, contain
complex functionality and are a host of mys-
terious firmware that most users only have the
faintest awareness of.

Host firmware. We refer to firmware that runs
on the CPU (as opposed to other chips) as host
firmware. Compared to chipset firmware, the host
firmware, known as the BIOS/UEFI, is also more
than just something that shows the bootsplash
screen and initializes computer hardware. Even
after system boot, an essential part of it still con-
tinues to run in the System Management Mode
(SMM), which runs custom and highly privileged
software that provides critical low-level system
functions, such as power management and system
hardware control. Because SMM code runs with
privileges higher than even the OS, it is a peren-
nial favorite for attacks. On early motherboards
(pre-2006), SMM code could be simply corrupted
by malicious kernel code because the BIOS failed
to hide the SMRAM (where SMM code executes)
from regular/system software. In the SMRAM
Control Register (SMRAMC), the D_OPEN bit
controls whether the SMRAM is visible, and the
D_LOCK bit locks up the whole SMRAMC and
D_OPEN until the next reboot. D_LOCK was not
set by some motherboards.

While this was easily fixed on subsequent
motherboards, it was not the end of weaknesses
in the SMM firmware. SMM exploits have been
continually identified since 2008. Later compro-
mises consisted of failures to properly secure
SMM from various other seemingly unrelated
mechanisms. For example, the memory reclaim-
ing flaw used to compromise the Intel ME was
also exploited to attack SMM. This allowed a ma-
licious operating system to once again gain access
to SMRAM by using the reclaiming mechanism
to remap the SMRAM region into an accessible
region of memory.

About a year later, another SMM compro-
mise was found via a cache poisoning attack.
Normally, system software can configure the
Memory-Type Range Registers (MTRRs) to con-
trol which memory regions can be cached and
how. But SMRAM did not get treated differently.
Then the attacker could just modify the “spilled”
SMM code (copied to cache) without accessing
SMRAM directly, which would get executed in
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SMM the next time and manipulate the actual
copy in SMRAM. To fix this issue, a new register
System Management Range Register (SMRR)
was introduced, accessible only from SMM, that
can configure SMRAM caching properties.

Unfortunately, the war in SMM did not end
there. Later in 2009, researchers found that
improperly written SMM code could invoke
functions outside SMRAM, leading to poten-
tial arbitrary code execution in SMM. To pre-
vent such callouts, another new control was
added, i.e., the SMM_Code_Chk_En bit in
the MSR_SMM_FEATURE_CONTROL register, so
that whether non-SMRAM code can run in SMM
can be configured by the initial SMM code.
This merely bought a few years of peace until
2015, when yet another SMM vulnerability was
discovered, this time because it needed to take
external arguments. If the pointer passed in is
used without checking, SMM code can be tricked
into writing to its own SMRAM (pointed to by
the pointer) in a way that facilitates the attack.

All in all, these SMM issues have driven
Intel to create a high-level solution, the SMM-
Transfer Monitor (STM), first available in 2015.
Rather than remove all vulnerabilities in SMM,
STM seeks to reduce opportunities for privilege
escalation via SMM by reducing the privilege of
SMM code by wrapping it with a light-weight
monitor. By enforcing necessary checks in the
STM monitor, SMM code can be sanitized and
behave as expected. However, STM has been far
from usable as multiple parties are involved, e.g.,
who will write best-practice/universal monitor
code that can verify all model-specific SMM code
(there are a lot of vendors/models), and how to
coordinate the OS developer, BIOS developer and
hardware vendor, as STM checks would only
proceed when all components are in agreement.

After the various complications of firmware
have been discussed, motherboard technologies
like Secure Boot (by BIOS/UEFI) and Intel Boot
Guard (by the Intel ME) may sound less trust-
worthy as a result of the many firmware vulner-
abilities found in these components.
The CPU. Last but not least, if we look further
into the CPU, it has never been a purely hard-
ware execution engine. The microcode, which
can be thought of as another layer of hardware-
level instructions, is used to implement more and

more complex operations to support new hard-
ware features. An anonymous report [9] reverse-
engineered the microcode update mechanism. It
highlighted that even if only vendor-verified up-
dates are allowed, an attacker in control of this
process can still choose to patch the microcode in
a way that facilitates his attack. What is fortunate
is that no recent CPUs are known to be vulnerable
to such attacks [1].

Analysis of Firmware Vulnerabilities
Examination of the reported attacks shows

that the danger of hardware firmwarization can
be analyzed in two aspects: static and dynamic.
The former concerns the persistent storage of
firmware and the latter concerns the runtime
security of firmware in execution.

As with software, one of the key advantages
of firmware is that it is updatable. However, like
software, it also needs to run in volatile memory,
and thus needs isolation from other software.
Such factors may be neglected when firmware is
considered to be part of hardware.

Static: Update Mechanisms

As long as the firmware exposes an update
interface that is accessible by lower-privileged
components, including the system OS, the poten-
tial for corruption of that firmware exists. While
many such interfaces only allow firmware updates
whose integrity has been cryptographically veri-
fied, there are various ways that verification can
go awry, leading to compromise. These ways fall
in 1) Undocumented/unscrutinized interface, such
as the VSCs of SSDs. This might be residual from
factory testing or intended for easier maintenance.
2) Improperly-protected persistent storage. One
example is the SPI flash chip on the mother-
board where numerous types of firmware (ME,
BIOS/UEFI, SMM, certain SGX secrets, etc.) are
stored. For example, while many motherboards
only trust SMM with SPI write access [2], pre-
vious sections have shown that SMM itself is
far from secure. 3) Defective verification. This is
mainly caused by bugs in the verification logic.
Microcode attacks to the old CPUs [1] belong to
this category.
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Dynamic: Memory Corruption

Since firmware itself is really just software,
it inherits vulnerabilities that can be common to
all types of software. Memory corruption refers
to a wide range of attacks where program defects
may allow an attacker to alter the memory of a
program in a way not intended by the original
programmer. It happens because certain firmware
needs to be loaded into volatile memory for
execution, even if it is stored in an immutable
location. Memory safety remains an open re-
search problem for regular software, let alone the
less formalized firmware development. The latest
Intel ME vulnerabilities were a typical example:
multiple buffer overflows in the kernel of the ME
firmware.

Dynamic: Shared Address Space

In addition, firmware may not have physical
isolation, but only logical isolation from regular
software running on the same system, which may
be prone to flaws and vulnerabilities. This is
in contrast with non-Turing-complete hardware
that does not share resources with software or is
physically isolated.

• Insufficient separation. Firmware memory
is often visible or can be configured to
be visible to regular software for conve-
nience, performance or other reasons. For
example, shared cache memories, memory-
mapped I/O and memory reclaiming can all
cause unintended access. The past exploits
of both SMM and ME were related to such
insufficient separation, e.g., the ME proces-
sor needs to “steal” a region from the main
memory due to its own limited SRAM.

• DMA (Direct Memory Access). This applies
to all high-bandwidth device firmware. To
reduce the main CPU’s intervention as a
performance bottleneck, the CPU’s memory
controller allows devices and the system
software to set up memory ranges that can
be accessed by both the device processor
and the CPU. Then, the device processor
can move data autonomously. Enabled by its
controllers, the DMA opens a hole in the
already-separate spaces, i.e., exposing mem-
ory to USB/SATA storage/network devices.

The Closed Nature of Firmware
When firmwarization already creates some

concerns, what worsens the situation is that the
design and implementation of most firmware
remains proprietary and largely undocumented.
The security community mainly relies on reverse-
engineering to unveil (partially) the details.
Such opaqueness hides potential problems from
the public while real attacks do not necessar-
ily depend on public information. It has been
well documented that security-through-obscurity
does not work, and rather, can lead to seri-
ous vulnerabilities going unnoticed as security
researchers/professionals must spend additional
effort to get basic information before they can
discover and disclose vulnerabilities.

Lessons-learned and the Way Forward
All the aforementioned firmware attacks show

that compromise no longer needs physical access,
i.e., the desired hardware property of modifi-
cations requiring physical access is void. This
completely contradicts the common perception of
hardware immutability.

Moreover, the security of software depends on
the underlying hardware. If the threat model of a
computer system assumes that hardware is to be
trusted, then compromised hardware undermines
all security guarantees. Therefore, firmwarized
hardware can cause both the hardware and the
software to fail. We examine some possible ap-
proaches to better securing firmwarized hardware.

Can Attacks Be Mitigated by Avoiding
Firmwarization?

A large number of firmware attacks target “re-
flashing” the persistent storage and thus are static,
affecting the immutability. If firmarization did not
exist, there would be no update mechanisms, so
such attacks would no longer be possible. Other
attacks target the runtime protection of firmware
and are thus dynamic. Similarly, if there were no
firmarization, such attacks would fail, as hardware
does not need a shared address space, nor is it
susceptible to memory corruption, and thus this
attack vector would also be removed.

It would then appear that an easy security
solution to firmwarization is to do away with
it. However, as explained earlier, there are many
non-security reasons to use firmware. Firmware
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allows the possibility of different implementa-
tions that trade-off efficiency and cost, a feature
that is very important for a broad and healthy
computing industry. In addition, having hardware
be partially field-updatable has many important
benefits that cannot be ignored.

Finally, it should be noted that hardware with
no (updatable) firmware can still contain bugs.
Indeed, one of the variants of the Spectre vul-
nerability cannot be patched via a firmware (i.e.
microcode) update as it is embedded directly in
the hardware logic. Thus, being able to patch
the hardware when a vulnerability is discovered
is also a benefit of firmware, from a security
perspective, as opposed to leaving doors open for
attackers with completely immutable hardware.
For these reasons, it would seem that the benefits
of firmwarization may outweigh its supposed
threats to security, and thus we should instead
search for methods to make firmwarized hardware
as secure as pure hardware implementations.

Then, should firmware be treated the same way
as software?

As firmwarization is inevitable, it is important
to admit that the vast quantities of code fulfilling
hardware functions deserve at least the same (or
more) degree of attention as regular software.
Yet, these highly trusted, low-level software com-
ponents are often opaque in their functionality.
Their proprietary nature prevents open auditing
and validation of their security. Their low-level
privileges often encourage complex and unrelated
functionality to be packed into their implementa-
tion.

Experience has shown time and again that the
notion of hardware-assisted security approaches
may end up relying on firmwarized hardware,
in one way or another. Therefore, a change of
mindset is necessary for hardware vendors and
the research community: we must treat firmware
the same way as software.
Firmware security engineering. Security design
principles widely accepted for software, such as
Saltzer and Schroeder’s design principles [10] can
also be applied to firmware, in particular:

Openness. Public scrutiny helps minimize
straightforward issues caused by opaqueness.
Some open frameworks can serve as references
for secure designs of firmware, e.g., coreboot and

OpenWrt.
Least privilege. When vulnerabilities do ap-

pear, reducing the damage they can cause is as
important as preventing them. Firmware’s privi-
leges may be managed by a lower minimal layer
for fine-grained access control.

To address the insufficient separation issue,
the least privilege approach can be taken to fur-
ther consider an improved firmware model that
abstracts away more from software, instead of
tolerating sharing with access control.

Economy of mechanism. As with regular soft-
ware, complexity is a major contributor to vulner-
abilities. Traditionally, hardware being difficult to
patch, has had economy of mechanism “baked
in” by necessity. With increasing use of firmware,
this traditional bias towards simplicity and con-
servative design has been eroded. We advocate
a return to those original design principles due
to the highly privileged and trusted nature of
hardware.
Related work in academia. Fortunately, some
of the discussed issues have already attracted
attention in the research community and led to
progress in firmware security research. Zhang et
al. proposes IOCheck[11] to verify the firmware
integrity of various peripherals by directly reading
peripheral memory. One major concern is that
IOCheck relies on SMM as the trust anchor
to perform checks. If SMM is no more secure
than other firmware, then tools depending on it
cannot be relied upon. Also, the heterogeneity
of peripherals can make the firmware retrieval
very difficult, not to mention maintaining all the
correct checksum/signatures. At least, IOCheck
sheds some light on the assurance of overall
firmware integrity, not specific to a device type.

To address a subset of the BadUSB problem,
USBCheckIn [15] uses human user’s physical
interaction with HID devices (e.g., keyboards
and mice) to detect misbehavior. This proposal
points to a new direction of firmware integrity:
checking the behavior of a device against a set of
specifications before trusting it.

Through this article, we hope to waken the
community’s awareness of the phenomenon that
an increasingly greater part of modern hardware
is implemented in “software”. In light of this, the
phrase “software is eating the world” seems to
apply to more than just startup companies. We
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worry that this trend has implications for the se-
curity of our future computer systems, prompting
us to encourage the reader to consider: Is the next
hardware-assisted security feature any better than
a software-assisted security mechanism?
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