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Abstract

Intrusion detection is a key technology for self-healing systems designed to prevent or manage damage caused by secu-
rity threats. Protecting web server-based applications using intrusion detection is challenging, especially when autonomy is
required (i.e., without signature updates or extensive administrative overhead). Web applications are difficult to protect
because they are large, complex, highly customized, and often created by programmers with little security background.
Anomaly-based intrusion detection has been proposed as a strategy to meet these requirements.

This paper describes how DFA (Deterministic Finite Automata) induction can be used to detect malicious web requests.
The method is used in combination with rules for reducing variability among requests and heuristics for filtering and
grouping anomalies. With this setup a wide variety of attacks is detectable with few false-positives, even when the system
is trained on data containing benign attacks (e.g., attacks that fail against properly patched servers).
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Self-healing systems detect problems and repair
them with little or no human intervention, and do
so in a timely fashion. Although such detection/
response combinations are desirable for many classes
of problems, one of the most compelling applications
is that of computer security, where Internet-con-
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nected computers are routinely attacked by computer
viruses, worms, and human adversaries. In living sys-
tems, response to damage from analogous threats is
coordinated primarily by the immune system. Simi-
larly, ‘‘computer immune systems’’ have been
proposed to respond to threats that circumvent con-
ventional computer defenses. Earlier work in com-
puter immunology has addressed many security
threats, by program code [1,2] monitoring network
connections [3–5] and low level program behavior
[6–9]. However, as we explain below, these methods
in their current form are not appropriate for protect-
ing web server applications.
.
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Web servers are important to protect because
they are so ubiquitous, yet they are currently poorly
defended. For example, web-based vulnerabilities
have been estimated to account for more than
25% of the total number of reported vulnerabilities
from 1999 to 2005 [10]. Web servers must accept
complex, highly variable inputs from virtually any
host on the Internet, and with the emergence of
web application services, they must process those
inputs in arbitrarily complex ways. These character-
istics make the problem of securing web servers
especially challenging.

One approach to protecting computer systems,
including web servers, is to craft specific defenses
for each observed problem, either in the form of
code patches or attack signatures. Both strategies,
however, require a human to analyze each problem
and develop the solution. This limits the feasible
response time to a timescale of hours or days, but
attacks by self-replicating programs (viruses or
worms) can manifest in a matter of seconds [11];
thus, there is a need for automated mechanisms that
can detect and respond to threats in real time.
Anomaly-detection methods have been proposed
as an alternative because they can potentially detect
novel attacks without human intervention [12–14,6].
In anomaly detection, a model of normal behavior
is developed from empirical observations, and sub-
sequent observations that deviate from the model
are labeled anomalies. Anomaly detection is prob-
lematic in the case of web servers, however, because
web traffic is highly variable and it is difficult to
characterize normal behavior in a way that both
detects attacks and limits the rate of false alarms.

Other researchers have addressed the anomaly
detection problem for web servers by measuring
the frequency distribution of one or more simple
features of a web request (the conduit of most
attacks on web servers) and combining those fea-
tures into a single anomaly measure. Although the
features taken individually, such as character fre-
quency, are often not sufficient for accurate detec-
tion, multiple features can be combined with
better results [15]. However, these anomaly detec-
tors are trained on data that are free of attacks. This
requirement is unfortunate because the normal
background of today’s Internet contains large num-
bers of attacks, most of which are harmless against
properly patched servers. Signature-scanning intru-
sion-detection systems (IDS) such as snort [16] can
be used to filter out known harmless attacks; how-
ever, the high accuracy required for training
requires frequent updates to the attack signature
database and careful site-specific tuning to remove
rules that generate false alarms. This manual inter-
vention reduces the main advantage of using anom-
aly detection.

To summarize, there is a need for web servers
that can detect and repair damage caused by secu-
rity violations with minimal human interaction. To
accomplish this will require techniques for detecting
anomalous web requests that are tolerant of the
benign attacks that are inevitably present in obser-
vations of normal web traffic. This paper describes
a system that addresses these criteria, which learns
normal requests using deterministic finite automata
(DFA) induction. To account for the high variabil-
ity in normal web requests, we combine the DFA
with a set of simple parser heuristics, which remove
the most variable parts of the web request before the
induction step, and anomaly heuristics for classify-
ing detected anomalies during the testing phase.

In order to test our system, we collected a data
set consisting of 65 attacks against web servers, a
much larger corpus than has been used in earlier
work, and we studied the normal traffic from four
distinct web sites over the course of months. The
tests show that our system can detect 79% of the
attacks with 40 false alarms per day on a complex
website; with simpler websites, our system can
detect 90%+ with just a few alarms per day. These
numbers are competitive with similar methods but
do not require pre-filtering of training data to elim-
inate attacks in the data.

In the remaining sections, we first give back-
ground information on intrusion detection in Sec-
tion 2. We then describe the DFA method for
modeling HTTP requests (Section 3), the datasets
we developed for testing (Section 4), and our exper-
imental results in Section 5. Implications of the
work are discussed in Section 6. Section 7 reviews
related work, and Section 8 gives a summary of
our results and plans for future work.

2. Background

A brief overview of intrusion detection in the
context of web server security is given, with an
emphasis on anomaly-based intrusion detection.
We then compare our system to the most similar
approaches, leaving the discussion of other related
work to Section 7.
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2.1. Intrusion detection

As discussed earlier many intrusion detection
techniques are relevant to web server protection,
and some are used in production environments.
These systems generally scan network packets,
searching for signatures of known attacks [16]. These
signature-based methods require significant tuning
to reduce false-positives, they cannot detect zero-
day attacks, the rule sets must be continually updated
to track evolving threats, and they may be vulnerable
to ‘‘squealing’’ when an attacker carefully crafts nor-
mal packets to match attack signatures [17].

Specification-based systems detail what behavior
is allowed instead of what is not allowed, as signa-
ture detectors do. A common example is that of net-
work firewalls, which restrict classes of network
traffic allowed into or out of a network. Web serv-
ers, however, must accept connections from almost
any machine on the Internet, which means that traf-
fic content must be examined in addition to traffic
type. Some application-specific firewalls [18–21]
pre-process and filter incoming traffic to repair or
remove malformed requests. Sometimes, the
allowed behavior is constrained at a lower-level,
for example, by restricting the types and arguments
of system calls into the operating system kernel [22].
Because web servers are so complex, and the behav-
ior of web-based applications is variable, it is diffi-
cult to create an appropriate set of rules. In fact,
it might be easier to simply audit the targeted pro-
grams, removing the sources of vulnerabilities.
And, new functionality may violate existing rules,
so the specifications must be re-evaluated each time
a web server receives a significant upgrade.

For an IDS to fit within the self-healing frame-
work, we need a system that works autonomously,
specifically, one that does not require manual mon-
itoring or updating, one that easily adapts to mod-
ified applications, and one that responds to novel
(zero day) attacks. To be practical, the system
should also have modest CPU and storage require-
ments. These are challenging requirements, and no
existing system (research or commercial) meets all
of them. The systems that come closest, however,
are based on the principles of anomaly detection.

2.2. Anomaly-based IDSs

Anomaly-based IDSs assume that intrusion
attempts are rare and that they have different char-
acteristics from normal behavior. Because they typ-
ically operate in an environment with frequent
configuration changes, hardware faults, software
errors, and other transient problems, all of which
can generate unusual behavior, anomaly detection
systems almost always generate some false-positives.
False-positives are thus an important metric for
evaluating IDS performance. Most systems are eval-
uated by testing against a corpus of known attacks,
and system parameters are adjusted to maximize the
number of detected attacks while minimizing false-
positives. Thus, it is essential that the evaluation
use a realistic sample of normal behavior; otherwise,
it is easy to choose parameter settings that are too
sensitive and will produce a high number of false-
positives in practice.

False-positives are related to the variability of
observed behavior and the techniques used to model
that behavior. If the problem domain is highly var-
iable under normal conditions (e.g., web requests),
then generalization can compensate. If the observed
behavior has low variation, then less generalization
is required. Because generalization can cause dan-
gerous behavior to be classified as normal, we in
general want to minimize generalization while still
achieving a reasonable false-positive rate. This
tradeoff exists in all anomaly-detection applications,
but the details of how it is managed depend on the
details of the application itself.

Anomaly detection was introduced early to the
field of intrusion detection [12,13]. NIDES, in par-
ticular, relied on sophisticated statistical modeling
methods [13]. Much of this work focused on user
behavior to address insider threats, a domain with
high variation. In practice, these early systems
had high false-positive rates relative to other
approaches, for example those based on monitoring
program behavior [23].

Intrusion detection had more success when
applied at the level of network connections and to
low level program behaviors. At the network level,
detection was based on unusual traffic based upon
its source and destination IP addresses, protocol
(TCP or UDP), and ports [14,24,25]. However,
because nothing is unusual or particularly danger-
ous about a new machine connecting to a web
server, another approach is needed for the web
server problem. Forrest et al. [6] introduced the idea
of modeling program behavior by recording short
sequences of system calls. This work generated sig-
nificant interest and many proposals for alternative
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models of system call behavior, including variable
length sequences [26] and rule-based data mining
[27]. Warrender et al. [28] evaluated many of these
alternatives, concluding that there was little differ-
ence in performance among the various methods,
and notably, that the simplest methods performed
about as well as the more complex approaches. This
result illustrates the simplicity of the learning prob-
lem when the problem is formulated so that the
observed data are relatively stable.

Unfortunately, system call monitoring does not
appear to be a viable approach to detecting attacks
against web servers. Earlier work with pH [9], a
Linux-based IDS that monitors sequences of system
calls, produced results suggesting that large server
programs such as web servers are difficult to moni-
tor in practice, sometimes taking months to achieve
a stable model of normal behavior (although see [29]
for how to address this). A more serious problem is
that many attacks against web servers are due to
configuration mistakes or errors in the web applica-
tion code. Exploits based on these vulnerabilities
may not generate unusual system call patterns
because they may not cause any unusual executions
of web server code (because the web server is simply
interpreting the vulnerable scripts). This kind of
attack is likely to be undetected by many system
call-based approaches. Because all I/O behavior
typically passes through the system call interface
or something equivalent, virtually all attacks on
web servers should, in principle, be detectable by
observing arguments to system calls. Earlier
attempts to model system call arguments, however,
generated high false-positives [30], despite the use
of a much more sophisticated modeling strategy
than Forrest et al. originally proposed. This discrep-
ancy appears to be a natural consequence of the
high variability of system call arguments relative
to sequences of system calls.

2.3. Anomaly detection for web servers

Earlier work using anomaly detection to protect
web servers monitored network data rather than
patterns of network connections or low level pro-
gram behavior. Some systems treat web servers as
a generic network service. Incoming and outgoing
traffic are modeled as a stream of bytes or as dis-
crete packets. Some approaches search for anoma-
lous packet headers [31], while others look for
patterns in the first few packets of connections
[32]. Packet payloads are natural places to look
for malicious content. Wang and Stolfo [33] mod-
eled packet payloads by comparing character distri-
butions between the payloads of similar-sized
packets, and Vargiya and Chan [34] developed mul-
tiple statistical techniques for dividing packet data
into tokens used for anomaly detection. All of these
systems were evaluated using the 1999 MIT Lincoln
Labs data [35], a data set that has only four attacks
against web servers.

In contrast to these protocol-independent
approaches, Kruegel and Vigna [15] and Kruegel
et al. [36] studied anomalous web requests that were
destined for common gateway interface (CGI) pro-
grams. They combined multiple characteristics of
request parameters including order, presence, and
variability. Their system was tested using extensive
normal data sets from multiple sites (including Goo-
gle), but only twelve attacks.

Tombini et al. [37] combined misuse and anomaly
detection to find attacks in logged HTTP requests.
Their approach takes advantage of the strengths of
both misuse (signature) and anomaly detection to
improve performance, and they tested a portion of
it with 56 web request attacks. Their approach is lim-
ited from a self-healing standpoint, however, because
it requires significant site-specific manual configura-
tion and tuning. Robertson et al. [10] recently pro-
posed that false-positives could be reduced in the
anomalous web request domain by grouping anoma-
lies and using heuristics to identify the attack type
associated with request. This proposal is similar in
spirit to the heuristics we present in Section 3.4.

2.4. The challenge of harmless attacks

One key problem not addressed by earlier sys-
tems is the presence of benign attacks in normal
training data. Most systems pre-filtered common
attacks from their training data before building
their models. To understand why this is problem-
atic, consider the example of a cross-site scripting
(XSS) attack. In this class of attack, an attacker
exploits a web site that allows comments to be
added to a page—for example, most blogs have a
way for readers to comment on the blog. In the case
of a XSS attack, the attacker injects code as part of
the comment, which is executed on the browser of
the machine that displays the comments. In some
circumstances, scripts gain access to cookies, form
data, and other browser information that might be
sensitive. The scripts can also initiate communica-
tion to hostile web servers.



K.L. Ingham et al. / Computer Networks 51 (2007) 1239–1255 1243
Suppose the protected web server accepted nor-
mal requests of the form:

GET /scripts/access.pl?user=johndoe&

cred=admin

If the cred = portion had been vulnerable to a
cross-site scripting (XSS) attack in the past, then
the training data for the anomaly detector might
include instances such as (the two examples are
equivalent, but encoded differently)1:
GET /scripts/access.pl?user=johndoe

&cred=<script>document.location=

00http://www.cgisecurity.com/cgi-bin/
cookie.cgi?00+document.cookie</script>

GET/scripts/access.pl?user=johndoe

&cred=%22%3e%3c%73%63%72%69%70%74%

3e%64%6f%63%75%6d%65%6e%74%2e%6c%6f%

63%61%74%69%6f%6e%3d%27%68%74%74%70%

3a%2f%2f%77%77%77%2e%63%67%69%73%65%

63%75%72%69%74%79%2e%63%6f%6d%2f%63%

67%69%2d%62%69%6e%2f%63%6f%6f%6b%69%

65%2e%63%67%69%3f%27%20%2b%64%6f%63%

75%6d%65%6e%74%2e%63%6f%6f%6b%69%65%

3c%2f%73% 63%72%69%70%74%3e

If attacks such as these appear in the training
data, they will eventually affect statistical represen-
tations of normal:

• The attribute character distribution would be
biased toward cross-site scripting-type values.

• The attribute and overall request length would be
shifted toward larger values (XSS attacks are
longer by the length of the attacking script plus
required HTML or related code).

If a new XSS vulnerability were discovered, this
time associated with a different program, exploits
for it would likely have similar character distribu-
tions, attribute lengths, and request lengths to that
of the earlier attacks. And, if these measures were
part of a model of normal web requests, the system
would be trained to tolerate not only the original
attacks but the newer ones as well. The same is true
of other attacks as well, for example buffer-over-
flows. If harmless attacks are in the training data,
1 These attack strings use examples from <http://www.cgise-
curity.com/articles/xss-faq.shtml>.
then variants and combinations of these classes of
attacks are likely to be accepted as normal by anom-
aly detection systems that combine multiple, inde-
pendent measures of requests. This process is
illustrated in Fig. 1(a).

To minimize the impact of benign attacks in nor-
mal data, we need to minimize generalization, as
illustrated in Fig. 1(b). The DFA method described
in the next section is designed to perform much less
generalization than other proposed methods for
modeling web requests. Naively applied, our
method in fact performs too little generalization:
When running on unprocessed data (such as raw
characters or whitespace-separated tokens), it will
not generalize over simple variations in benign
requests (such as time stamps or hashes). By being
careful in our choice of tokens, however, we found
that this problem can be largely avoided.
3. Modeling web requests

In this section we first describe our method for
modeling web requests, first by discussing how we
tokenize web requests, and then by explaining how
we build a DFA model of requests. Next, we
describe how new behavior is compared to our
DFA model. Then, we discuss how to mitigate
false-positives.
3.1. Tokenizing HTTP requests

Our tokenizer generates tokens that are then fed
to the DFA induction algorithm. The tokenizer first
extracts the tokens as described in the HTTP RFC
standard [38]. These tokens combine the token type
(e.g., pathname component) and optionally the
value (e.g., cgi-bin). The parsing process is com-
plicated by the fact that some web browsers and
many web robots fail to follow the standard. This
means that if software (including our own) is to
understand the HTTP request it must be more gen-
eral than the standard. Although achieving this
functionality was laborious, the process was rather
straightforward.

A second challenge was variation in the stream of
tokens that were produced by the tokenizer. We
found that most of the values are needed to properly
distinguish attacks from normal requests; thus, we
have had to tolerate higher variability in web
requests than is desirable. We dealt with this by

http://www.cgisecurity.com/articles/xss-faq.shtml
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Fig. 1. Generalization strategies: U is the universe of all possible HTTP requests, N illustrates the set of normal requests, XSS1, XSS2
indicate cross-site scripting attacks, and BU1 and BU2 indicate buffer overflow attacks. If XSS1 and BU1 are in the training data, the lines
surround what an anomaly detection system would be expected to accept. (a) Existing systems, for example, a simple statistical system
such as character distribution and (b) desired systems.

1244 K.L. Ingham et al. / Computer Networks 51 (2007) 1239–1255
identifying which tokens are the most variable
values and devising parser heuristics for reducing
their variability. Specifically, we use the following
parser heuristics:

• All upper case letters in the tokens (names and
values) are mapped to lower case letters.

• File names are mapped to their file type. In the
case of an unknown type, the filename is instead
mapped to its length.

• Hostnames and IP addresses are replaced by
values indicating whether or not they are syntac-
tically correct.

• Dates are parsed and replaced by a value indicat-
ing whether it follows a known date format. The
parser recognizes the three formats specified in
the HTTP standard along with several others
that appeared in the test data.

• Hash values from PHP session identifiers and
entity tags are validated and removed.

• q-values are floating point values in the range
[0,1] that are used in feature negotiations such
as preferred languages and file types. q-values
are replaced with a valid/invalid flag.

• User names in email addresses are replaced with
their length.

By replacing these highly variable attribute pairs
with values that are both more predictable and
indicative of whether those particular pairs are valid
or not, we simplified the DFA induction problem
significantly. However, we still need an induction
method that generates relatively compact and effec-
tive models of web requests. We adopted a induc-
tion algorithm developed by one of us (JB).
3.2. Burge DFA induction algorithm

The Burge DFA induction algorithm is an O(nm)
algorithm, where n is the number of samples in the
training data set and m is the average number of
tokens per sample. The algorithm does not require
negative examples, and as we will describe, the
resulting DFA can be modified easily to deal with
a non-stationary environment, i.e., one that con-
stantly changes.

To model a web request, we construct an initial
DFA as follows. First, let R = {T1, . . .,Tn} be the
set of n unique tokens in the HTTP request, and
let L = (l1, . . ., lt) with li 2 R be the series of t chro-
nologically ordered tokens from the HTTP request,
with FINISH added in as a special token to indicate
the end of the request. Let G = (S,A) be a DFA
with states S and transitions A. S = {SSTART,
S1, . . .,Sn,SFINISH} where states S1, . . .,Sn have a
one-to-one correspondence with tokens T1, . . .,Tn,
and SSTART and SFINISH are additional states. E(t)
is a function that returns the state to which t will
cause a transition. A = {Ai,j} where Ai,j indicates a
transition labeled Tj between states Si and Sj.

Given these definitions, the algorithm proceeds
as follows:

1. Set the current state C = SSTART, A = ;.
2. For j = 1 to t:

(a) If AC;EðljÞ not 2 A then A A [ AC;EðljÞ
(b) C E(lj)
3. A A [ AC;SFINISH

A DFA G is constructed with one state for each
unique token in the HTTP request, as well as the



Fig. 2. The DFA induced by the Burge algorithm for the series of tokens T3, T4, T2, T3, T1, T2. (a) The initial empty DFA with one state
for each token. The ST and F nodes correspond to the SSTART and SFINISH states. (b) The state of the DFA after the T3, T4, T2 tokens
have been read. (c) The final state of the DFA after the entire series of tokens has been read in. Note that all states corresponding to
consecutive tokens in the HTTP request are connected with a transition.
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two additional states SSTART and SFINISH. At the
start of the algorithm, no transitions are present in
the DFA and a current state C is set to the SSTART

state. Then, in step 2, tokens are sequentially
processed from L. In step 2a, if no existing transi-
tion exists between the current state and the state
corresponding to the current token, the transition
is created and the new transition is labeled with
the current token. C is then updated to be the state
corresponding to the current token. After all the
tokens have been processed, a transition from C

to SFINISH is created. Fig. 2 shows an example. At
this point, the DFA model has one state corre-
sponding to each unique token present in the HTTP
request, and the DFA has a transition between any
two states that were seen consecutively in the
request. The transition is labeled with the token cor-
responding to the destination state.

Additional requests are processed by running the
algorithm with the tokens from the new request,
adding nodes as needed for new tokens and adding
edges to the DFA as described above. As the learn-
ing proceeds, the compacting processes described
below is regularly performed.
Fig. 3. Compressed version of the DFA in Fig. 2(c). States that
have identical sources and destinations (S1 and S4) are com-
pressed into the same state (‘‘S1,S4’’). Tokens that originally
caused a transition into one of the uncompressed states cause
transitions into the compressed state.
3.2.1. Compacting and generalizing the DFA model

In practice, the DFA induction algorithm
described above leads to large, complex DFAs that
potentially could grow without bound in dynamic
environments with perpetually novel HTTP requests.
We use two techniques to manage this complexity,
one that compacts an existing model and one that
adds states and transitions incrementally and ‘‘for-
gets’’ structures that have not been used.

To reduce DFA size, our algorithm searches at
regular intervals for nodes that have the same
source and destination (sorting the nodes by source
and destination nodes can allow this comparison to
run in O(n logn) time). These nodes are combined
into a single node, as illustrated in Fig. 3.

This compression is a useful form of generaliza-
tion. For example, suppose that during learning
the DFA was compressed, producing Fig. 3. Then,
as learning continued token T1 was observed lead-
ing to the compressed state (S1,S4). Given the
DFA’s current topology, the next expected token
would be T2. However, if a new token, T5, were
observed before the expected T2 token, the DFA
learning algorithm would insert a new state, S5, into
the DFA (Fig. 4). This new topology is a generaliza-
tion of the observed token sequence because either a
T1 or T4 token followed by a T5 token will lead to
the new S5 state (Fig. 5). Thus, modifying the topol-
ogy of a compressed DFA allows the resulting DFA
to generalize from any of the constituents of a com-
pressed node to other similar but unobserved behav-
ior involving the node’s other constituents. This
form of generalization is well matched with the gen-
eralization we need for web requests.

Without compression before the T5 token was
observed, this generalization would not occur
because once the T5 token is observed, the S1 and
S4 states can no longer be merged. However, the
method may miss some generalizations by not
compressing the DFA before generalizable behavior
is observed. This limitation could be addressed by



Fig. 4. Compressed DFA from Fig. 3 after additional learning.

Fig. 5. The DFA in Fig. 4 without compression. The dotted link
between states S1 and S5 indicates what is generalized when
learning on the compressed DFA.
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counting the number of times certain links have
been observed and compressing all states that differ
by a small number of incoming and outgoing link
counts.
3.3. Determining similarity between a request

and the DFA

A DFA by itself is simply a language acceptor;
however, we expect some variation in normal
behavior (changes in clients, site content, or usage
patterns) that is not covered by the generalization
algorithms. In this section we define a distance mea-
sure for comparing a DFA model with a web
request to determine how anomalous it is. With this
measure, we can tune the relative rate of true-posi-
tives to false-positives.

During testing, the DFA model is used differently
from a traditional DFA. When a token is processed
that is illegal according to the DFA, a ‘‘missed
token’’ event is recorded and an attempt is made
to resynchronize. For example, in Fig. 3, suppose
the current state were S1, S4 and the next token were
T3. If the edge corresponding to the next token
exists elsewhere in the DFA, then the tester could
transition to the edge’s destination. Continuing the
example, the new current state would be S3, and a
missed-token event would be recorded. If no such
edge exists, a second missed-token event is recorded,
and the tester moves to the next token, again
attempting to resynchronize. The number of missed
tokens provides an estimate of how anomalous the
request is with respect to the DFA. The similarity
s between an HTTP request and the DFA is calcu-
lated by:

# of tokens reached by valid transitions

# of tokens in the HTTP request
2 ½0; 1�:

The similarity measure reflects the changes that
would have to be made to the DFA for it to accept
the request (i.e., for each missed token a new transi-
tion would have to be added). Note that the signif-
icance of a single missed token by this measure
depends upon the total number of tokens in the re-
quest. One benefit of this sensitivity is that more
complex requests (i.e., those specifying many of
the HTTP header options) have more room for
slight changes and can still be accepted as nor-
mal. A measure that is less sensitive to the token
count is likely to have a higher false-positive rate
due to the common, benign variations in complex
requests.

Unlike Hidden-Markov Model (HMM) appro-
aches to learning, our method does not compute
probabilities for each link in the state transition
table. Rarely accessed parts of a web site (e.g., pages
‘‘about this web site’’) or rarely used configurations
of web clients can thus be tolerated. Of course, the
DFA itself is induced from an observed sample of
requests, and we expect the more common examples
to be present in the sample. Because the distance
measure is itself a form of generalization, it is possi-
ble for our system to miss attacks even if they were
not present in observed normal traffic. We address
the security impact of this ‘‘feature’’ in Section 6.
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3.3.1. Non-stationary data

To track web sites that change over time, the
learned model needs to update itself automatically.
When a normal HTTP request arrives that is not
captured by the current DFA but has a high similar-
ity value, the DFA is modified to accommodate the
request. The threshold for this operation is con-
trolled by a parameter specified by the system
administrator; the threshold would normally be set
near 1.0, so that only requests that are very similar
to the DFA are learned.

To detect unused edges, a counter is updated
every time an edge is traversed. The counters are
used during periodic pruning sweeps when infre-
quently used edges are deleted. After each sweep,
all counters are reset to 0. A parameter controls
how aggressive the pruning pass is, and if it is set
to 0, only edges that have not been used since the
last pruning pass are deleted. This allows recently
added edges to survive for one full interval between
prunings.
3.4. Heuristics for reducing false-positives

It is desirable to reduce false-positives as much as
possible without compromising the system’s ability
to detect attacks. After studying the system in oper-
ation, we observed that some consistent patterns
exist in the false alarms, and based on these regular-
ities we have developed two heuristics that are
applied only to anomalous requests.

Many false-positives are caused by HTTP
requests with unusual lines. Because these lines are
not critical for the web server to identify the
requested resource, the system tries deleting the fol-
lowing HTTP header lines, one at a time: Referer,
Cookie, Accept-Language, Accept-Charset, and
Accept. If, after deleting a line, the request passes
the similarity test, then it is accepted and processed
without the anomalous header lines. Aside from
cookies, the worst potential impact on a user is that
a web client might receive the default version of a
web page instead of one customized to its preferred
language, character set, or file format.

Deleting cookies is potentially more serious,
because they might encode state (e.g., the PHP ses-
sion identifier cookie) that is required for proper
operation of the web site. Deleting a cookie could
interfere with the user’s ability to visit the web site.
Some web clients send cookies to web sites that do
not match the cookie’s list of sites that may read
and modify it. These unexpected cookies then cause
the request to be identified as abnormal.

We added a second heuristic after noticing a web
robot which came online during testing, and was not
observed in the training data. The one robot was
responsible for nearly 10000 false-positives because
its request format was different from the normal
requests. To account for such situations, this second
heuristic groups putative attacks into classes. When
a request is classified as being abnormal, it is com-
pared to the DFAs in a set of DFAs representing
attacks. If the anomalous request is similar enough
(controlled by a parameter we call the ‘‘grouping
threshold’’), it is incorporated into the DFA repre-
senting a class of attacks. If it is not similar to any
of the existing attack classes, it is used to start a
DFA for a new class of putative attacks. The com-
parisons and additions to DFAs are as previously
described. By grouping related unusual requests,
an administrator could look at a single exemple of
the class and determine if it is acceptable. If so,
the request could be added to the main DFA in
the normal way, and future similar requests would
be accepted as normal. Note that a similar heuristic
was also independently developed by Robertson
et al. [10].

4. Test data

We used four production web sites to collect our
normal data, and then we developed our extensive
database of attacks for testing our system.

4.1. Normal data

The training and test data are sets of HTTP
requests from four web sites:

aya.org uses PHP extensively for dynamic con-
tent and a MySQL database.
explorenm.com uses Perl extensively and some
PHP for CGI scripts, as well as a PostgreSQL
database.
i-pi.com is a static website that only serves files.
cs.unm.edu contains official departmental content
and a diverse set of student and faculty web
pages, ranging from simple content to complex,
automatically generated content.

The cs.unm.edu data were collected from
November 2004 through February 2005. The
aya.org, explorenm.com, and i-pi.com (henceforth
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referred to as the pugillis data, after the server host-
ing these domains) data were collected in January
and February of 2005. The data are broken into
data sets; each data set represents approximately
one week, with the exact time being determined by
filesystem limits on the number of subdirectories.
The data sets for a web site are of similar sizes.
For results in this paper, the cs.unm.edu training
data set was 2004-11-12 and the test data set was
2004-11-17; the pugillis training data set was 2005-
01-25 and the test data set 2005-01-29. Table 1
shows the sizes of each of the four web sites.

Each data record includes the entire HTTP
request sent by the client to the server, allowing us
to make use of the HTTP header lines and test for
attacks that are not contained in the requested
resource path. For the cs.unm.edu data, the attacks
were filtered through a combination of automatic
(using snort plus custom scripts) and manual inspec-
tion. The attacks were saved for later testing. The
training and testing phases could therefore be run
on data sets with or without harmless attacks (i.e.,
attacks detected by snort but that were targeting
programs or exploits that the cs.unm.edu web server
was not vulnerable to). The attacks in the pugillis
data sets were discarded before their importance
was realized.
4.2. Attack data

The attack database currently contains a collec-
tion of 65 attacks, some of which are different exam-
ples of the same vulnerability, either a different
exploit for the same vulnerability or an exploit for
the vulnerability on a different operating system.
We collected the attacks from the following sources:
attacks against web servers we were testing (attacks
in the wild); BugTraq archives [39]; the Security-
Focus vulnerability database [40]; the Open Source
Vulnerability Database [41]; the Packetstorm
Table 1
The four web sites used for testing

Web site Files Database Requests

cs.unm.edu 181,132 None 390,950
aya.org 5095 MySQL 40,149
explorenm.com 6146 PostgreSQL 36,944
i-pi.com 6644 None 7694

Files is the number of distinct files on the web site. Requests is the
number of HTTP requests in the training dataset.
archives [42]; and Sourcebank [43]. In many cases,
we had to debug the attack programs in order to
get them to produce malicious web requests. How-
ever, we did not verify whether the attacks could
actually compromise the targeted web application.

The attack database contains the following cate-
gories of attacks: buffer overflows; input validation
errors (other than buffer overflows); signed interpre-
tation of unsigned values; and URL decoding errors.
The attacks were against a collection of different web
servers: Active Perl ISAPI; AltaVista Search Engine;
AnalogX SimpleServer; Apache with and without
mod_php; CERN 3.0A; FrontPage Personal Web
Server; Hughes Technologies Mini SQL; InetServ
3.0; Microsoft IIS; NCSA; Netscape FastTrack
2.01a; Nortel Contivity Extranet Switches; Omni-
HTTPd; and PlusMail. The victimized operating
systems for the attacks include the following: AIX;
Linux (many varieties); Mac OS X; Microsoft Win-
dows; OpenBSD; SCO UnixWare; Solaris x86;
Unix; VxWorks; and any x86 BSD variant. A snap-
shot of the database we are using is at http://
www.i-pi.com/HTTP-attacks-JoCN-2006.

This attack database is more extensive than those
used in earlier work on web server intrusion detec-
tion. For example, researchers using the Lincoln
Labs data [44,45] have at most four attacks to work
with. Kruegel and Vigna [15] used 11 attacks, some
of which were chosen specifically because they tar-
geted software available on the web servers used
to collect training data. Tombini et al. [37] report
using 56 attacks to test a portion of their IDS. Note
that the only one of these that is publicly available is
the Lincoln Labs data.
5. Experiments

In this section, we report some experimental
results obtained by using the training and test
datasets just described. The experiments test perfor-
mance in terms of model size and accuracy (true-
positives and false-positives), for both the case of
data in which attacks were filtered and the case
where they were unfiltered. We then also present
results regarding the specificity of our model in
order to illustrate the limited amount of generaliza-
tion our method performs on web requests.

Table 2 shows size of DFA learned from the
training data. For the cs.unm.edu unfiltered data,
the induced DFA has 62897 edges and 7854 nodes.
The alphabet in the tests includes the values of most

http://www.i-pi.com/HTTP-attacks-JoCN-2006
http://www.i-pi.com/HTTP-attacks-JoCN-2006


Table 2
DFA sizes for filtered training data sets

Web site Edges Nodes

cs.unm.edu 61,574 7843
aya.org 13,310 1800
explorenm.com 8213 1645
i-pi.com 5819 1269

Edges and Nodes show the size of the induced DFA.

Table 3
False-positive rates per day for four production web sites on
filtered data

Web site False-positives per day True-positive fraction

cs.unm.edu 21.20 0.92
aya.org 2.25 0.90
explorenm.com 0.50 0.97
i-pi.com 1.00 0.99

The results were obtained using a similarity threshold of 0.9 and a
grouping threshold of 0.65.
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tokens; hence it is large. Note that the DFA edge
count is well below the maximum of jRj2.

Accuracy results for IDSs are often reported
using a receiver operating characteristic (ROC)
curve. Fig. 6(a) shows the values for filtered data
for all four web sites, and Fig. 6(b) compares filtered
and unfiltered data for the cs.unm.edu data. True-
positives are the fraction of the attack set properly
identified, while false positives are the fraction of
the test data (containing no attacks) that were
improperly identified as attacks. Each point repre-
sents a different threshold for normal, and each set
of connected points represents a different configura-
tion of the algorithm. In a ROC curve, a perfect
IDS would have a point at (0, 1) indicating correct
identification of both attacks and normal traffic.

The false-positive rate depends on the similarity
threshold and the grouping threshold, parameters
a system administrator could vary to change the
ratio of true-positives to false-positives. The false-
positive rate for the four sites on filtered data is
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Table 4
DFA performance across web sites: the DFA induced from each web site is tested against the other web sites

Train on cs.unm.edu aya.org i-pi.com explorenm.com

FP Frac /day Frac /day Frac /day Frac /day

Test on

cs.unm.edu 0.007 251 0.127 11,639 0.081 7427 0.094 8612
aya.org 0.040 33 0.005 27 0.005 27 0.024 119
i-pi.com 0.116 96 0.098 81 0.003 2 0.087 72
explorenm.com 0.123 102 0.101 437 0.014 61 0.014 61

The units are first false-positive fraction, then false-positives per day. The results are for a continually learning DFA with similarity
threshold of 0.852 and not using the GRP heuristic.

Table 5
HTTP request length (in characters) statistics for the four web
sites

cs.unm.edu aya.org i-pi.com explorenm.com

Mean 343 323 347 328
Std. dev. 126.68 115.08 136.54 93.25

These data are from the filtered data sets.
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6. Discussion

In this section we interpret the experiments and
explore their significance, focusing on the accuracy
of our method in terms of false and true-positives,
the significance of our modeling strategy and how
it relates to other approaches to anomaly detection,
and the suitability of the method for production
systems.

6.1. Accuracy

The accuracy of our system has notable limita-
tions from the perspective of both true and false-pos-
itives. Table 3 shows a significant number of false-
positives in a day, over 21 a day in one environment,
and almost 40 per day when attacks are not filtered
from normal data. The site in question, however,
was complex, because it combines a large website
for an academic department with class websites, fac-
ulty websites, and student websites. Given this com-
plexity and variability, high false-positives may be
inevitable. The results were much better on the other,
more stable sites. In contrast, in the experiments not
all of the tested attacks were detected, either in the fil-
tered or the unfiltered data. The performance reduc-
tion between the filtered and unfiltered results in
Fig. 6(b) is largely an artifact of the lower number
of tested attacks: the number of attacks missed is
approximately the same in both cases, although not
exactly the same attacks were missed.
This variable performance illustrates a common
pattern we observed during testing: Although we
were never able to detect all of the attacks in a given
test, the attacks that were missed depended in subtle
ways on the normal training data. For example, one
of the missed attacks (a ‘‘Beck’’ attack) consisted
primarily of a URL with hundreds of /’s in a row.
This attack was classified as normal in some tests
because a user error in a normal request had
included two slashes (/) in a path name. This exam-
ple created a link from the / token to itself in the
DFA, allowing the attack URL’s repeated /’s to
be classified as normal. In other tests where this
training example was not present, the attack was
detected. In this case it is clear the DFA generalized
too much.

In other cases, however, manual inspection of a
missed attack request showed that it was very close
to normal requests. These attacks may not be ame-
nable to request-level anomaly detection; however,
they may be detectable by other anomaly detection
approaches such as system call or user-level model-
ing. Indeed, rather than insisting that every method
for anomaly detection detect every attack, we
believe it is more prudent to ask whether a new
method detects attacks that are missed by other
methods. By this standard, the results are quite
promising. For example, Wang and Stolfo [33] only
tested on four attacks; Kruegel et al. [15,36] studied
12 attacks, and these were all based on parameters
for CGI scripts (which are only 40% of our attacks).
We have extended this work by studying 65 attacks,
almost all of which are detected in at least one test.
Note that no other type of anomaly detection sys-
tem has been shown to be able to detect most of
the attack types that we examined.

Nevertheless, there is room for improvement.
Both false and true positives could likely be
improved by combining multiple models of web



K.L. Ingham et al. / Computer Networks 51 (2007) 1239–1255 1251
requests, as proposed by Kruegel et al. [15,36]. As a
component in such a framework, the DFA
approach could potentially extend the framework’s
coverage.

6.2. Modeling variable data

Our approach can be summarized as: ‘‘Remem-
ber past events in as much detail as possible, and
use specific rules to reduce variation in the less pre-
dictable parts of the data stream’’. This approach
contrasts with earlier work, in which one or more
simple, low information content models are used
to characterize normal behavior. Our strategy
resembles that used in Forrest et al. [6]. In that work
only one heuristic was used to reduce variation
(ignore system call arguments), and here we have
developed several, more specialized heuristics. The
DFA method can produce larger models in terms
of storage space than other methods; however, the
expanded use of space directly translates into faster
execution for both learning and detection. On
modern machines such a space/time tradeoff is
feasible and often desirable.

Because future events are rarely identical to the
past, some generalization is essential for any anom-
aly detection system. Our DFA induction method
overgeneralizes in some circumstances and does
not generalize enough in others. Both issues are
recurring problems for anomaly-detection systems,
particularly in the context of malicious training
and mimicry attacks [46]. Having said this, our
results give some support for the intuitive observa-
tion that our method generalizes less than those pro-
posed by other researchers. Specifically, Table 4
shows that the DFA can distinguish between web
sites, showing that the learned models are site-spe-
cific (and hence not very general). Given that our
learned DFAs include site-specific information
including pathnames, this result is not surprising.
However, note that most statistics used by other
researchers do not directly incorporate site-specific
information, but rather make generalizations that
may or may not vary between sites. As shown in
Table 5, measures such as request length do not
appear to vary much between sites (at least in our
limited sample); other statistics, though, may vary
more. Thus, more work is required to determine
how general in practice the models produced by
other methods [15,33,36] relative to ours and to
explore how the degree of generalization affects true
positives, false-positives, and susceptibility to mim-
icry attacks. Further investigation of these issue is
planned for future work.

Although the work reported in this paper relies
on manually developed parser heuristics to reduce
variability, this task lends itself to automation.
After building a DFA from a set of examples, the
program could search for nodes with a high out
degree. For these nodes, if most of the outbound
edges have a low usage count (e.g., <10), then the
DFA is attempting to memorize a highly variable
portion of the protocol. Once these candidates are
identified, then statistical techniques such as those
used by Kruegel et al. [36] could be used to charac-
terize the variable portion. Or, a human could use
the standards to determine the legal structure. This
automated approach for finding high variability
regions and replacing them with less variable infor-
mation could be used in other anomaly detection
environments.

6.3. Suitability for production use

The technique described in this paper could be
implemented as part of an online anomaly-based
IDS because of three key factors: the Burge DFA
induction algorithm has low complexity, it produces
compact DFAs on real-world data when combined
with the parser heuristics, and it can learn on a set
of easily obtained normal requests sent to web serv-
ers without requiring pre-filtering of attacks. We
envision such an IDS taking the form of a web
proxy. Normal requests (including those that have
a line deleted) are passed to the server. Abnormal
requests would either be blocked or sent to a sepa-
rate, less-functional but more secure sever. The
proxy approach would also be useful because it
can determine from the web server reply whether
or not a request is valid. Currently our data set
includes improper paths, syntax errors, and other
examples of the problems that web client, web proxy
and web robot designers have in properly following
the HTTP standards. And, the resulting DFAs
include this behavior. By avoiding the behavior of
known illegal requests, we should be able to gener-
ate even smaller DFAs.

There are several outstanding issues to be
resolved before a proxy server implementation could
be deployed. How long should the system be trained?
How do we automatically generate parser heuristics?
When do we have sufficient confidence to rewrite or
block a request? Although these are all challenging
and important issues (particularly in the context of
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an autonomous, self-repairing system), experience
with another online anomaly-based IDS [9] leads
us to believe that they are tractable. Because a proxy
implementation would also provide a useful frame-
work for testing and comparing approaches, we see
this as a promising area for future work.

7. Other related work

In general, learning algorithms for one-class,
non-stationary problems like the security anomaly
detection problem are rare, although this is an area
of current interest in the machine learning commu-
nity (e.g., see [31,47,48]). Methods for handling
non-stationary data include forgetting, as described
by Salganicoff [49]. Other machine learning algo-
rithms, such as neural networks with adaptive crit-
ics, have been proposed as an anomaly detection
method [50]. However, these methods require a
fixed input size, a limitation that prevents use with
HTTP requests. Littman and Ackley [51] looked
at cases where the problem can be divided into
two parts, variable and invariant, although this
approach would not apply to our environment,
where little is invariant.

In the worst case, DFA learning from only posi-
tive evidence is known to be NP-complete [52], but
Lang showed that the average case is tractable
[53]. In practice, DFA induction is feasible in many
contexts, and there is an extensive literature on
DFA induction algorithms [54–56]. While the Burge
DFA induction algorithm is novel in its simplicity
and in the type of generalization it performs, other
DFA induction algorithms not requiring negative
examples may also be suitable for modeling web
requests.

Others have used representations that could be
considered a directed graph (or used to generate a
directed graph). Forrest et al. used sequences of sys-
tem calls to represent behavior of programs [6]; sets
of sequences implicitly define a DFA of acceptable
behavior. Wagner and Dean used a directed graph
to represent the system calls made by a protected
program [57]. Other researchers (e.g., [26,29,58])
have studied anomaly detection using methods for
constructing finite automata-based models of pro-
gram behavior. In the web server protection
domain, Kruegel and Vigna [15] tried a Markov
model for representing the characters in CGI
parameters. However, they found that most transi-
tions in their Markov model were rare; thus, they
instead used their Markov model as a zero/non-zero
test to see if the structure of the CGI parameters
had been seen in training. By ignoring the magni-
tude of transition probabilities, they in effect used
their Markov model as a DFA.
8. Conclusion

Protecting web servers is a challenging and
important problem, especially in the context of cus-
tom web-based applications. We described a
method for detecting anomalous web requests via
DFA induction that meets many of the require-
ments of an autonomous security solution, includ-
ing efficient online unsupervised one-class learning,
tolerance for highly variable normal behavior that
contains benign attacks, and detection of a wide
variety of attacks on web applications. We have also
developed and released an extensive corpus of
attack examples that should help other researchers
develop better web application defenses.

Although the current implementation has limita-
tions both in terms of attack detection and false
alarms, we have demonstrated that the principle of
modeling normal data as precisely as possible, with
variability being excluded only when necessary, is
an important and viable approach to anomaly
detection. We forsee that systems that combine mul-
tiple models based on similar principles will eventu-
ally be accurate enough to deploy as part of
security-oriented, autonomous self-healing systems.
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