
Weighing Down

“The Unbearable Lightness of PIN Cracking”⋆

Mohammad Mannan and P.C. van Oorschot

School of Computer Science, Carleton University

Abstract. Responding to the PIN cracking attacks from Berkman and
Ostrovsky (FC 2007), we outline a simple solution called salted-PIN. In-
stead of sending the regular user PIN, salted-PIN requires an ATM to
generate a Transport Final PIN from a user PIN, account number, and a
salt value (stored on the bank card) through, e.g., a pseudo-random func-
tion. We explore different attacks on this solution, and propose a variant
of salted-PIN that can significantly restrict known attacks. Salted-PIN
requires modifications to service points (e.g. ATMs), issuer/verification
facilities, and bank cards; however, changes to intermediate switches are
not required.

1 Introduction

Attacks on financial PIN processing APIs revealing customers’ PINs have been
known to banks and security researchers for years (see e.g. [5], [4], [3]). Ap-
parently the most efficient of these ‘PIN cracking’ attacks are due to Berkman
and Ostrovsky [2].1 However, proposals to counter such attacks are almost non-
existent in the literature, other than a few suggestions; for example, maintain-
ing the secrecy (and integrity) of some data elements related to PIN processing
(that are considered security insensitive according to current banking standards)
such as the ‘decimalization table’ and ‘PIN Verification Values (PVVs)/Offsets’
has been emphasized [4], [2]. However, implementing these suggestions requires
modifications to all involved parties’ Hardware Security Modules (HSMs). Com-
mercial solutions such as the PrivateServer Switch-HSM [1] rely mostly on
‘tightly’ controlling the key uploading process to a switch and removing ‘unnec-
essary’ APIs or weak PIN block formats. Even if the flawed APIs are fixed, or
non-essential attack APIs are removed to prevent these attacks, it may be diffi-
cult in practice to ensure that all intermediate (third-party controlled) switches
are updated accordingly. Thus banks rely mainly on protection mechanisms pro-
vided within banking standards, and policy-based solutions, e.g., mutual banking
agreements to protect customer PINs.

One primary reason that PIN cracking attacks are possible is that actual
user PINs, although encrypted, travel from ATMs to a verification facility. We
seek a solution that precludes real user PINs being extracted at verification

⋆ Version: March 10, 2008. Contact author: mmannan@scs.carleton.ca.
1 We encourage readers unfamiliar with financial PIN processing APIs and PIN crack-

ing attacks to consult the longer version of this work [6].



2

facilities, and especially at switches (which are beyond the control of issuing
banks), even in the presence of API flaws. While PIN cracking attacks get more
expensive as the PIN length increases, it is unrealistic to consider larger (e.g.
12-digit) user PINs, for usability reasons. As part of our proposal, we assume
that a unique random salt value of sufficient length (e.g. 128 bits) is stored on a
user’s bank card, and used along with the user’s regular four-digit PIN (‘Final
PIN’) to generate (e.g. through a pseudo-random function (PRF)) a larger (e.g.
12 digits) Transport Final PIN (TFP). This TFP is then encrypted and sent
through the intermediate switches. We build our salted-PIN solution on this
simple idea. We discuss several attacks on salted-PIN, and outline one variant
of the original idea which is apparently resistant to currently known attacks.
Our proposals require updating bank cards (magnetic-stripe/chip card), service-
points (e.g. ATMs), and issuer/verification HSMs. However, our design goal is
to avoid changing any intermediate switches, or requiring intermediate switches
be trusted or compliant to anything beyond existing banking standards.

Salted-PIN provides the following benefits. (1) It does not depend on policy-
based assumptions, and limits existing PIN cracking attacks even where interme-
diate switches are malicious. (2) It significantly increases the cost of launching
known PIN cracking attacks; for example, the setup cost for the translate-only
attack for building a complete Encrypted PIN Block (EPB) table now requires
more than a trillion API calls in contrast to 10,000 calls as in Berkman and
Ostrovsky [2]. (3) Incorporating service-point specific information such as ‘card
acceptor identification code’ and ‘card acceptor name/location’ (as in ISO 8583)
into a variant of salted-PIN, we further restrict attacks to be limited to a par-
ticular location/ATM.

2 Salted PIN

Here we present the salted-PIN proposal in its simplest form.

Threat model and notation. Our threat model assumes attackers have access
to PIN processing APIs and transaction data (e.g. Encrypted PIN Blocks, ac-
count number) at switches or verification centers, but do not have direct access
to keys inside an HSM, or modify HSMs in any way. Attackers can also create
fake cards from information extracted at switches or verification centers and use
those cards (perhaps through outsider accomplices). We primarily consider large
scale attacks such as those that can extract millions of PINs in an hour [2]. We
do not address attacks that are not scalable, such as card skimming, or cases
where an accomplice steals a card and calls an insider at a switch or verification
center for an appropriate PIN. The following notation is used:

PAN User’s Primary Account Number (generally 14 or 16-digit).
PIN User’s Final PIN (e.g. 4-digit, issued by the bank or chosen by the user).
PINt User’s Transport Final PIN (TFP).
Salt Long-term secret value shared between the user card and issuing bank.
fK(·) A cryptographically secure Pseudo-Random Function (PRF).



3

Generating salted-PINs. A randomly generated salt value of adequate length
(e.g. 128 bits) is selected by a bank for each customer. The salt is stored on a
bank card in plaintext, and in an encrypted form at a verification facility under
a bank-chosen salt key. API programmers (i.e. those who use HSM API) at the
verification center have access to this encrypted salt (but do not know the salt
key or plaintext salt values). Encrypted salt values also cannot be overwritten by
API programmers. A user inputs her PIN at an ATM, and the ATM reads the
plaintext salt value from the user’s bank card, and generates a TFP as follows.

PINt = fSalt(PAN, PIN) (2.1)

The PRF output is interpreted as a number and divided by 1012; the 12-digit
remainder (i.e. PRF output modulo 1012) is chosen as PINt and treated as the
Final PIN from the user. Note that the maximum allowed PIN length by ISO
standards is 12. The ATM encrypts PINt with the transport key shared with
the adjacent switch, and forms an Encrypted PIN Block (EPB). An intermediate
switch decrypts an EPB, (optionally) reformats the PIN block, and re-encrypts
using the next switch’s transport key. Additional functionalities are not required
from these switches.

3 Attacks and Countermeasures

We now discuss attacks against the basic version of salted-PIN and outline one
variant to limit these attacks.

3.1 Attacks on Salted-PIN

Enumerating EPBs through translate-only API call. Here the goal of an
attacker is to create a table of EPBs, and then crack all user accounts. This
attack in part follows an efficient variant of the translate attack as outlined
by Berkman and Ostrovsky [2]. We assume an attacker Mi is an insider (e.g.
application programmer) at a switch or verification center, and Ma is an outsider
accomplice who helps Mi in carrying out user input at an ATM.

Assume that Mi extracts the salt value (Salta) and PAN from a card he
possesses, and uses equation (2.1) to generate the 12-digit TFP PINat (through
software or a hardware device, using any PIN PINa). Let PINat consist of
p1p2p3 . . . p12 where each pi (i = 1 to 12) is a valid PIN digit. Then Ma inserts
this card to an ATM, and enters PINa. Assume that the generated PINat is
encrypted by the ATM to form an EPB, E1. Mi captures E1 at a switch. If E1

is not in the ISO-1 format, Mi translates it into ISO-1 (to disconnect E1 from
the associated PAN). Let the translated (if needed) E1 in the ISO-1 format be
E′

1. E′

1 is then translated from ISO-1 to ISO-0 using p3p4 . . . p1200 as the input
PAN. This special PAN is chosen so that the XOR of PIN positions 3 to 12 with
PAN positions 1 to 10 removes p3 . . . p12 when the translation API is called; i.e.,

PIN block inside E′

1 = 0 C p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 F F
Input PAN = 0 0 0 0 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 0 0

Resulting ISO-0 PIN block = 0 C p1 p2 0 0 0 0 0 0 0 0 0 0 F F



4

Assume the resulting EPB is Ep1p2
which is the same as the one containing

a TFP p1p20000000000 with PAN 0. Now we can create all EPBs containing
every 12 digit TFPs starting with p1p2 from Ep1p2

. For example, an EPB with
p1p2q3q4 . . . q12 as the TFP can be generated through transforming Ep1p2

using
PAN q3q4 . . . q1200 (in ISO-0). Thus we can create all 1010 EPBs with TFPs from
p1p20 . . . 0 to p1p29 . . . 9. Starting from a different p1p2, all 1012 EPBs containing
every 12 digit TFP can be generated.

To launch an attack, a valid EPB of a target customer is collected. The EPB
is translated to ISO-1 (to decouple it from the target account, if not already in
ISO-1), then to ISO-0 with PAN 0. The resulting EPB is then located on the
EPB table (as created in the setup phase). The corresponding PIN from the
table can now be used to exploit a card generated with the target’s PAN, and
the attacker’s salt value (i.e. Salta). The cost of this attack is at most two API
calls and a search of O(1012), i.e., O(240).

In summary, the setup cost of this attack is about 1012 API calls with a per
account cost of two API calls plus a search of O(1012). The same translate-only
attack by Berkman and Ostrovsky [2] on the current implementation of PIN
processing requires only about 10,000 API calls as setup cost, and a per account
cost of two API calls plus a search of O(103). More on this attack is discussed
in the longer version of this work [6].

Replay attack. In this attack, an adversary Mi at a switch or verification center
collects a valid EPB Ec for a target PAN Ac, and then creates a fake card with
the account number Ac (and any salt value). Note that Mi here does not know
the actual salt value or PIN for the target account. An accomplice Ma uses the
fake card with any PIN at an ATM, and the ATM generates a false EPB Ea. At
the switch/verification center Mi locates Ea in transfer, and replaces Ea with the
previously collected correct EPB Ec. Thus the fake card will be verified by the
target bank, and Ma can access the victim’s account. Note that this attack works
against the basic variant of salted-PIN as well as current PIN implementations
without requiring any API calls. Although quite intuitive, this attack has not
been discussed elsewhere to our knowledge.

3.2 Service-Point Specific Salted-PIN

We now outline one variant of salted-PIN to practically restrict the above attacks
by increasing the per account attack cost. If a fake bank card is created for a
target account (e.g. through the attacks in Section 3.1), the card can be used
from anywhere as long as it remains valid (i.e. the issuing bank does not cancel
it). To restrict such attacks, we modify equation (2.1) as follows.

PINt = fSalt(PAN, PIN, spsi) (3.1)

Here spsi stands for service-point specific information such as a ‘card acceptor
identification code’ and ‘card acceptor name/location’ as in ISO 8583 (Data
Elements fields). The verification center must receive spsi as used in equation
(3.1). Although any PIN cracking attack can be used to learn a TFP or build
an EPB table, the table is valid only for the particular values of spsi. Also, the



5

replay attack may succeed only when the accomplice exploits a compromised
card from a particular ATM. Thus this construct generates a localized TFP for
each PIN verification, and thereby restricts the fake card to be used only from
a particular location/ATM.

4 Conclusion
In the 30-year history of financial PIN processing APIs, several flaws have been
uncovered. In this paper, we introduce a salted-PIN proposal to counter PIN
cracking attacks from Berkman and Ostrovsky [2]. Our preliminary analysis in-
dicates that salted-PIN can provide a higher barrier to these attacks in practice
by making them considerably more expensive (computationally). Salted-PIN is
motivated primarily by the realistic scenario in which an adversary may control
switches, and use any standard API functions to reveal a user’s PIN; i.e., an
attacker has the ability to perform malicious API calls to HSMs, but cannot
otherwise modify an HSM. Salted-PIN is intended to stimulate further research
and solicit feedback from the banking community. Instead of relying, perhaps
unrealistically, on honest intermediate parties (who diligently comply with mu-
tual banking agreements), we strongly encourage the banking community to
invest efforts in designing protocols that do not rely on such assumptions which
end-users (among others) have no way of verifying.

Acknowledgements
This work benefited substantially from discussion and/or feedback from a num-
ber of individuals, including: Bernhard Esslinger of University of Siegen, Joerg-
Cornelius Schneider and Henrik Koy of Deutsche Bank, especially regarding
attacks on the simple version of salted-PIN; a reviewer from a large Canadian
bank; Glenn Wurster; and anonymous reviewers. The first author is supported in
part by an NSERC CGS. The second author is Canada Research Chair in Net-
work and Software Security, and is supported in part by an NSERC Discovery
Grant, and the Canada Research Chairs Program.

References

1. Algorithmic Research (ARX). PrivateServer Switch-HSM. White paper. http:

//www.arx.com/documents/Switch-HSM.pdf.
2. O. Berkman and O. M. Ostrovsky. The unbearable lightness of PIN cracking. In Fi-

nancial Cryptography and Data Security (FC), Scarborough, Trinidad and Tobago,
Feb. 2007.

3. M. Bond. Attacks on cryptoprocessor transaction sets. In Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES), Paris, France, May 2001.

4. M. Bond and P. Zielinski. Decimalisation table attacks for PIN cracking. Technical
report (UCAM-CL-TR-560), Computer Laboratory, University of Cambridge, 2003.

5. J. Clulow. The design and analysis of cryptographic APIs for security devices.
Masters Thesis, University of Natal, Durban, South Africa, 2003.

6. M. Mannan and P. van Oorschot. Weighing down “The Unbearable Lightness of PIN
Cracking” (extended version). Technical report, School of Computer Science, Car-
leton University (2008). http://www.scs.carleton.ca/research/tech reports/.


