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Abstract

In commonplace textual password schemes, users
choose passwords that are easy to recall. Since mem-
orable passwords typically exhibit patterns, they are
exploitable by brute-force password crackers using at-
tack dictionaries. This leads us to ask what classes of
graphical passwords users find memorable. We postu-
late one such class supported by a collection of cogni-
tive studies on visual recall, which can be character-
ized as mirror symmetric (reflective) passwords. We
assume that an attacker would put this class in an at-
tack dictionary for graphical passwords and propose
how an attacker might order such a dictionary. We
extend the existing analysis of graphical passwords by
analyzing the size of the mirror symmetric password
space relative to the full password space of the graphi-
cal password scheme of Jermyn et al. (1999), and show
it to be exponentially smaller (assuming appropriate
axes of reflection). This reduction in size can be com-
pensated for by longer passwords: the size of the space
of mirror symmetric passwords of length about L + 5
exceeds that of the full password space for correspond-
ing length L ≤ 14 on a 5× 5 grid. This work could be
used to help in formulating password rules for graphi-
cal password users and in creating proactive graphical
password checkers.

1 Introduction

In ubiquitous textual password schemes, users tend to
choose passwords that are easy to remember - this
often means passwords which have “meaning” to the
user. Unfortunately, these (likely chosen) passwords
make up only an insignificant part of the full password
space. Furthermore, an attacker may build an attack

∗This paper appears in the Proceedings of the 13th USENIX

Security Symposium, San Deigo, USA, August 9-13, 2004.

c©USENIX.

dictionary of “likely passwords” (roughly equated with
those easily remembered) from which to draw candi-
date guesses. In Klein’s 1990 case study [13], 25%
of 14 000 user passwords were found in a dictionary
of only 3 × 106 words. This suggests that a password
scheme’s security is linked more closely to the size of its
memorable password space (for a reasonable definition
of “memorable”), than that of the full password space
(e.g. for 8-character passwords of digits and mixed-case
letters, about 2 × 1014).

Various psychological studies show that people have
significantly better recall for concrete words than ab-
stract words [12, 4]. We expect that passwords from
the full password space – such as “x*t1K$h9” – which
have no meaning whatsoever, are even less likely to
be recalled than abstract words; in general we would
not expect users to choose such passwords. Given the
success of dictionary attacks, it appears that the secu-
rity of a text-based password scheme is related to the
size of its memorable password space, much of which
consists of character strings representing, or derived
from, concrete words. Passphrases (passwords based
on mnemonic phrases) are one credible solution; how-
ever, given the success of dictionary attacks, it seems
they are seldom used.

Graphical password schemes (e.g. [11, 2, 6]) have
been proposed as an alternative to text-based schemes.
One motivation for graphical schemes is that humans
have a remarkable capability to remember pictures.
Psychological studies support that people recall pic-
tures with higher probability than words, including
concrete nouns [14]. This motivates password schemes
requiring recall of a picture in lieu of a word. If the
number of possible pictures is sufficiently large, and
the diversity of picture-based passwords can be cap-
tured, it seems reasonable to believe the memorable
password space of a graphical password scheme will
exceed that of text-based schemes – thus presumably
offering better resistance to dictionary attacks. What



remains to be shown is what sort of pictures people are
likely to select as graphical passwords – corresponding
to what we call the memorable password space. We
begin to explore this issue in the present paper.

We analyze the memorable password space (defined
in §3), motivated by the questions: (1) How might an
attacker build a graphical dictionary? (i.e. an attack
dictionary against a graphical password scheme); and
(2) How successful would a brute-force attack using
such a dictionary be? As mentioned, the high success
rate of brute-force dictionary attacks against textual
passwords is believed to be strongly related to the re-
call capabilities of humans and how this affects pass-
word selection: meaningful and thus more easily re-
membered strings are frequently chosen as passwords.
We suggest that a clever attacker would narrow down
the password space, and prioritize guesses, to pictures
that people are likely to choose as passwords, based on
the images they are most likely to recall.

To search for techniques that an attacker might use
in building a graphical dictionary, we consult psycho-
logical studies on visual memory. We review cognitive
studies indicating the types of images people are most
likely to recall (and presumably choose as passwords).
A collection of studies [1, 7] supports the idea that
people recall symmetric images better than asymmet-
ric images. A particularly interesting observation is
that mirror symmetry carries a special status in human
perception [27]. This motivates us to focus on mirror

symmetric graphical passwords. An attacker exploit-
ing this property of mirror symmetry (most probably
about a vertical or horizontal axis – see §3) might build
a graphical dictionary of the encoded representations
of graphical passwords, such that each entry represents
at least one mirror symmetric image. If such a dictio-
nary, containing some fraction of all possible graphical
passwords, allows successful attacks, then the security
of graphical password schemes may be significantly less
than e.g. if all passwords in the entire space were equi-
probable.

We define a class of memorable graphical passwords
in general, and specifically how this class would map
to a graphical password scheme proposed in 1999 by
Jermyn et al. called Draw-A-Secret (DAS) [11]. We
chose to analyze the memorable password space of
DAS to determine whether these passwords constitute
a sufficiently large password space for adequate secu-
rity. For clarity, we will refer to the length of a tex-
tual password as the t-length, and the length of a DAS
graphical password as length (see §4.1). We wish to
determine a password-length parameter for DAS such
that dictionary attacks are more costly than for text-
based schemes, given a fixed t-length. This gives the
former a chance to be a more secure alternative. We

consider the required graphical password length (see
§4.1), so that the mirror symmetric graphical password
space outsizes the corresponding space of memorable
textual passwords.

We define three subsets of our class of memo-
rable passwords (graphical dictionaries) that we be-
lieve would form a basic probability-based ordering of a
DAS graphical dictionary. In our analysis of the mem-
orable password space, we found that for DAS pass-
words of length less than or equal to 8 on a 5× 5 grid,
even our smallest graphical dictionary (§4.4), which
is a subset of what we call memorable graphical pass-
words, is larger in size than the larger textual password
dictionaries of 40 million entries [19] (intended for use
with password crackers such as John the Ripper [18]).
This implies that DAS passwords of length 8 or larger
on a 5 × 5 grid may be less susceptible to dictionary
attack than textual passwords.1

Under reasonable assumptions and parameter
choices, we show the time to exhaustively try all pass-
words in the full DAS space is approximately 540 years,
in comparison to 6 days for one of our proposed sym-
metric graphical dictionaries. Thus, if as conjectured,
a significant fraction of users choose mirror symmet-
ric passwords, the security of the DAS scheme may be
substantially lower than originally believed. However,
this reduction in size can be compensated for by longer
passwords: the size of the space of mirror symmetric
passwords of length about L + 5 exceeds that of the
full password space for corresponding length L ≤ 14
on a 5 × 5 grid.

Our contributions include the definition of a class
of memorable graphical passwords, the introduction
of graphical dictionaries, an analysis of the memo-
rable password space of the DAS scheme of Jermyn et
al. [11], and progress towards understanding the sub-
tleties of DAS. Although we focus our analysis on the
DAS scheme, our work has general implications for
all graphical passwords. This work could be used to
help in formulating password rules for graphical pass-
word users and in creating proactive graphical pass-
word checkers.

The sequel is organized as follows. §2 briefly dis-
cusses related work. §3 presents a proposed class of
memorable graphical passwords. §4 analyzes this class
for the DAS scheme. §5 discusses additional observa-
tions and possible extensions to this work, including
further concerns about the size of the DAS password
space that might be used in practice. Concluding re-
marks are made in §6.



2 Related Work

There is a fair amount of literature related to the tex-
tual password equivalent of this work. Many pass-
word cracking dictionaries and tools are available on
the Internet such as Crack [17] and John the Ripper

[18]. Understanding these tools and the dictionaries
they use is important to perform effective proactive
password checking. Yan [28] discusses some popular
proactive password checkers such as cracklib. Pinkas et
al. [23] discuss human-in-the-loop methods to prevent
online dictionary attacks; see also Stubblebine et al.
[24]. One defense against offline dictionary attacks is
to reduce the probability of cracking through enforcing
password policies and proactive password checking.

In the open literature to date, there have been sur-
prisingly few graphical password schemes proposed.
One using hash visualization [22] was implemented in
a program called Déjà Vu [6], based on psychological
findings that people recognize pictures better than re-

calling them. Generally, in this scheme a user has a
portfolio of pictures of cardinality F that they must be
able to distinguish within a group of presented pictures
of cardinality T.

Birget et al. [2] recently proposed another scheme
employing exactly repeatable passwords, which re-
quires a user to click on several points on a background
picture.

The DAS scheme ([11]; see §4.1) uses user-defined
drawings as graphical passwords. The main difference
from graphical pattern recognition is that DAS pass-
words must be exactly repeatable (as defined within
DAS). Exact repetition allows for the password to be
stored as the output of a one-way function, or used to
generate cryptographic keys. Given reasonable-length
passwords in a 5 × 5 grid, the full password space
of DAS was shown to be larger than that of the full
textual password space. In our analysis (see §4), we
assume DAS as the underlying scheme for encoding
graphical passwords, thus we do not consider pass-
words that are disallowed within DAS.

Regarding memorability issues for graphical pass-
words, Davis et al. [5] examine user choice in graphi-
cal password schemes. Particular to the DAS scheme,
Jermyn et al. [11] argue that the DAS scheme has
a large memorable password space by modeling user
choice. They examine the size of the password space
for combinations of one or two rectangles, and show
that this is comparable to the size of many textual
password dictionaries.2 A second approach to char-
acterize memorable passwords was based on the exis-
tence of a short program to describe the password, un-
der the assumption that all passwords that can be de-
scribed by a short program are also memorable (rather

than on findings from psychology or user studies). A
separate user study on memorability performed by
Goldberg et al. [8] showed that people are less likely to
recall the order in which they drew a DAS password
than the resulting image.

Jermyn et al. [11] suggest that the security of graph-
ical password schemes benefit from the current lack of
knowledge of their probability distribution; this moti-
vates our present work.

3 Proposed Class of Memorable

Graphical Passwords

Since the entries of textual password dictionaries are
based on words people recall better, we are lead to ex-
amine what types of images people recall better (and
thus presumably choose as graphical passwords). In
this section, we appeal to psychological studies and
discuss the literature leading us to define mirror sym-
metric graphical passwords as a class of memorable
graphical passwords.

Generally, free recall is ordered along the concrete-
ness continuum: concrete words are recalled more eas-
ily than abstract words, pictures more easily than con-
crete words, and objects better than pictures [14]. Var-
ious studies support this result (e.g. [12, 4, 15]). An-
other [3] found that a series of line drawings is poorly
remembered if the subject is unable to interpret the
drawings in a meaningful way. The more concrete a
drawing, the more meaningful it will be to the viewer.

The literature on visual memory often cites better
results for human visual recognition than visual recall.
However, it has been noted [20] that the methodologies
used in studies that test visual recall are flawed in that
they depend on people’s skill to recreate the image by
drawing and/or a well-defined and well-accepted the-
ory of visual similarity for comparison purposes. Ad-
ditionally, it is worth noting that most visual recall
studies allow at most a few seconds for the test sub-
ject to view and memorize the image. Given these
flaws, one may question the commonly accepted claim
that visual recognition is significantly better than vi-
sual recall. Even if visual recognition is better than
visual recall, visual recall is better than the recall of
words. Thus, findings that visual recognition is bet-
ter than visual recall do not invalidate the likelihood
of an increased memorable password space in recall-
based schemes over that of recognition-based schemes.

What may invalidate the likelihood of an increased
memorable password space in graphical password
schemes is if there are patterns in what types of im-
ages people recall better than others, creating classes
of memorable and thus predictable passwords. If such
classes are small enough that a brute-force attack



is feasible, then the security of graphical password
schemes may be no better in practice, or even worse,
than that of the standard textual password scheme.

There appears to be little existing research that ex-
amines the types of pictures people recall better. How-
ever, one cognitive study with interesting implications
showed experimentally how visual recall progressively
changed over time toward a symmetric version of the
image [21]. Given a set of asymmetrical, geometric
images, when the test subjects were asked to draw the
image from recall, all changes made from the originals
were in the direction of some balanced or symmetrical
pattern. This change was progressive over time toward
a symmetric pattern. That people recall images as in-
creasingly symmetric with time suggests that people
prefer images that are symmetric. Thus, the direc-
tion in our research changed from finding the specific
images people are more likely to recall, to finding ev-
idence that people have better recall for patterns and
images that are symmetric.

A representative overview of literature for human
symmetry perception [26] notes that many objects in
our environment are symmetric. Moreover, most liv-
ing organisms and plants, as well as almost all forms
of human construction are mirror symmetric (reflec-
tive). There is mirror symmetry in people, animals,
leaves, flower petals, automobiles, planes, trains, art,
buildings, tools, furniture, and religious symbols. The
objects in the average office or home are another exam-
ple. There is also significant evidence [27] that mirror
symmetry has a special status in human perception
over other symmetry types such as repetition, transla-
tion or rotational symmetry. While symmetry created
by other means such as rotation or translation was
found to require scrutiny, mirror symmetry is “effort-
less, rapid, and spontaneous” [26].

The classical studies mentioned earlier found that
people have better recall for pictures than words, and
better recall for objects than pictures. If people recall
objects best, and most objects are mirror symmetric,
this suggests that people may recall mirror symmetric
patterns best.

That symmetry is recalled best is supported by an
observation by Attneave [1] that when subjects were
given random patterns and symmetric patterns of dots,
the symmetric ones were more accurately reproduced
than random patterns with the same number of dots.
Attneave theorized that this may indicate that some
perceptual mechanism is capable of organizing or en-
coding the redundant pattern into a simpler, more
compact, less redundant form [1]. In a separate study,
French [7] observed that dot patterns that were sym-
metric were more easily remembered. Intuitively, this
is no surprise - in the case of mirror symmetry, a sub-

ject must only recall half of the image and its reflection
axis in order to reconstruct the entire image.

Mirror symmetry has a special meaning to human’s
visual perception, particularly when the axis is about
the vertical and horizontal planes. Mirror symmetry
has been found to be more easily perceived as having
meaning when it is about the vertical axis, followed by
when it is about the horizontal axis [27].

Supported by these collective studies, we propose
the following: since people are more likely to recall
symmetric images and patterns, and people perceive
mirror symmetry as having a special status, a signif-
icant subset of users are likely to choose mirror sym-
metric patterns as their graphical password. We sug-
gest that the mirror symmetric patterns chosen are
more likely to be about vertical or horizontal axes,
since mirror symmetry about these axes is more eas-
ily perceived. For graphical passwords, we thus define
memorable password to mean a password that exhibits
mirror symmetry about a vertical or horizontal axis
in its components (i.e. those parts of a drawing that
are visually distinct), meaning that each component
is either mirror symmetric in its own right, or is part
of a mirror symmetric pair of components. More for-
mally, these are Class I memorable passwords, leaving
the door open for future Classes II, III, etc.

We suggest that a clever attacker may specifically
try as candidate passwords, in a brute-force attack, all
memorable passwords in a graphical password space;
and more specifically, those passwords containing all
possible symmetric components first with symmetry
about all possible vertical axes, followed by those with
symmetry about all possible horizontal axes.

4 Analysis of Class I Memorable Pass-

word Space

To contribute towards a security evaluation of DAS,
we determine the size of the more probable subsets of
the DAS Class I memorable password space (recall §3),
i.e. the number of DAS password encodings (see §4.1)
representing at least one memorable password (recall
§3). This is based on the reasoning that the number
of entries in a “successful” attack dictionary provides
a measure of security.

The DAS graphical password scheme relies on a
user’s ability to recall their DAS password “exactly”
(as defined by the resolution of the encoding scheme).
What users must recall can be divided into two parts:
the temporal order of the strokes used in making the
drawing, and the final appearance of the drawing. The
latter is what our Class I memorable passwords cap-
ture, as it appeals to people’s ability to recall images.
Assumptions concerning the temporal order (i.e. the



order of the input of cells) are made in §4.2 and §4.3
to perform this analysis, leading us to define a set S.

§4.2 discusses our terminology and general ap-
proach. §4.3 discusses additional cases. §4.4 discusses
variations of the attack dictionary. §4.5 briefly dis-
cusses our resulting method to quantify the DAS mem-
orable password space. §4.6 presents some computa-
tional results.

4.1 Review of DAS Scheme

The DAS scheme [11, 16] decouples the position of
the input from the temporal order, producing a larger
password space than textual password schemes with
keyboard input (where the order in which characters
are typed predetermines their position).

A DAS password is a simple picture drawn on a G×
G grid. Each grid cell is denoted by two-dimensional
coordinates (x, y) ∈ [1 . . . G] × [1 . . . G]. A completed
drawing is encoded as a sequence of coordinate pairs by
listing the cells through which the drawing passes, in
the order in which it passes through them. Each time
the pen is lifted from the grid surface, this “pen-up”
event is represented by the distinguished coordinate
pair (G + 1, G + 1). Two drawings having the same
encoding (i.e. crossing the same sequence of grid cells
with pen-up events in the same places in the sequence)
are considered equivalent. Drawings are divided into
equivalence classes in this manner.

DAS disallows passwords considered difficult to re-
peat exactly (e.g. passwords involving pieces lying
close to a grid boundary). The definition of “close to
a grid boundary” is unclear [11]; we define it as any
part of a stroke that is indiscernible as to which cell it
lies within, meaning it lies within the fuzzy boundary

of a grid line. Any stroke is invalid if it starts or ends
on a fuzzy boundary, or if it crosses through the fuzzy
boundary near the intersection of grid lines. We reuse
the following terminology.

• The neighbours N(x,y) of cell (x, y) are (x −
1, y), (x + 1, y), (x, y − 1) and (x, y + 1).

• A stroke is a sequence of cells {ci}, in which ci ∈
Nci−1

and which is void of a pen-up.

• A password is a sequence of strokes separated by
pen-ups.

• The length of a stroke is the number of coordinate
pairs it contains.

• The length of a password is the sum of the lengths
of its strokes (excluding pen-ups).

Jermyn et al. [11] recursively compute the (full)
password space size, i.e. the number of distinct repre-
sentations of graphical passwords in the DAS scheme.
This gives an upper bound on the memorable password
space and thus on the security of the scheme. It is as-
sumed that all passwords of total length greater than
some fixed value have probability zero. They com-
pute the full password space size for passwords of total
length at most Lmax. For Lmax = 12 and a 5× 5 grid,
this is 258, exceeding the number of textual passwords
of 8 characters or less constructed from the printable
ASCII codes (

∑8
i=1 95i < 253).

4.2 Basic Terminology and General

Approach

To capture visually mirror symmetric DAS passwords,
we first consider which reflection axes to use. We as-
sume that the user references the grid lines for the
symmetry in the drawing, since if the reflection axis is
a point of reference, the password will be easier to re-
peat exactly. Therefore, the reflection axes considered
are those that cut a set of grid cells (Fig. 1a), or are on
a grid line (Fig. 1b). This means that any symmetric
password drawn such that its axis is off-center within
a set of cells is not considered. For example, the pass-
word in Fig. 2a is visually symmetric when the grid is
not in place, but we do not consider it part of the DAS
Class I set of memorable passwords since its reflection
axis is not on a grid line or centered in a set of cells as
shown in Fig. 2b. We justify this assumption as fol-
lows: it is more difficult for a user to draw an exactly
repeatable symmetric password without a visible point
of reference on the grid for the reflection axis.

We thus define the set of axes within a W × H

grid (width W, height H): A = Ah ∪ Av; Ah =
{1, 1.5, 2, . . . , (H − 1).5,H}; Av = {1, 1.5, 2, . . . , (W −
1).5,W}. Here i.5 is the grid line separating rows i

and i + 1, or columns i and i + 1 respectively.
In addition to the visual appearance of a DAS pass-

word, the most likely ways in which a visually mirror
symmetric DAS password can be drawn must be con-
sidered in constructing a DAS Class I graphical dictio-
nary. It turns out to be quite tricky to map the idea of
a visually mirror symmetric DAS password onto DAS
encodings to enumerate, as we describe in a number of
cases (below and in §4.3). DAS Class I memorable
passwords are only defined in terms of their visual
structure. There is a one-to-many relationship be-
tween a given Class I memorable password to the num-
ber of ways it can be drawn in the DAS scheme (which
are then mapped to possibly less unique DAS encod-
ings). We believe there are some more likely ways that
users will draw mirror symmetric components in their
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Figure 1: Possible axes can (a) cut a set of cells; or (b) be on a grid line between sets of cells.
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Figure 2: Drawing that is symmetric about a difficult to reference axis. Assuming the v is drawn before the dot, the
encoding of (b) is (2,2), (3,2), (3,3), (3,2), pen-up, (3,2), pen-up. If shifted slightly to the right to be symmetric about
the vertical axis x = 3, it has symmetric encoding (see §4.2): (3,2), (3,3), (3,2), pen-up, (3,2), pen-up.

DAS passwords; we call this “more probable” subset of
unique DAS encodings S.

Preliminary user studies have shown that the tem-
poral order has an adverse effect on user’s ability to
recall a DAS password [8]. If the temporal order is a
complicating factor that adds more complexity to what
users must recall, it is likely that they will choose DAS
passwords with less complexity (e.g. less strokes). We
assume the way users will draw a DAS Class I pass-
word is such that the composite stroke(s) of each mir-
ror symmetric component are drawn in a symmetric
manner (as defined in the disjoint case as described in
this section and the continuous and enclosed cases as
described in §4.3). We believe the resulting subset S

captures the easiest (and thus more likely to be chosen)
ways to draw DAS Class I memorable passwords.

We model each symmetric DAS password as a series
of strokes (each representing a single component or
pair of components) that have local symmetry about
a set of axes, each such stroke modeled by a virtual

start point s and virtual end point e (not necessar-
ily the start and end points of the user-drawn stroke).
A stroke has local symmetry if it is symmetric about
some axis in a given set of axes. This includes draw-
ings where all or most strokes are symmetric about dif-
ferent axes, which may have no immediately perceiv-
able pattern, as shown in the example password in Fig.
3a. When the strokes are symmetric about axes in the
same vicinity, it results in an increasingly symmetric
drawing as a whole, which we call pseudo-symmetry.
An example of a pseudo-symmetric drawing is shown
in Fig. 3b. When the strokes are all symmetric about
the same axis, it results in a drawing that has global

symmetry (e.g. the star in Fig. 3c); since all strokes
are symmetric about the same axis, the entire drawing
is symmetric about the same axis.

We define a symmetric encoding to be an encoding
that represents an equivalence class of DAS passwords,
where at least one password in the equivalence class
belongs to S. Using the DAS encoding scheme, a sym-
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Figure 3: Example Class I memorable DAS passwords (that could be drawn such that they are in S) containing the same
components, symmetric about different patterns of axes: (a) 3 different, scattered axes, (b) 3 different, nearby axes, and
(c) a single axis.

metric encoding may represent a number of passwords,
some of which may not be visually mirror symmetric
(e.g. see Fig. 4).

Fig. 4 illustrates different representations of one
equivalence class of DAS passwords with the same
symmetric encoding. This implies our results count
not only mirror symmetric passwords, but also others
which are not but belong to an equivalence class in
which at least one password is mirror symmetric.

Each stroke within a symmetric encoding is bounded
within a symmetric area, defined as the area between
a given axis and the closest grid boundary parallel to
the axis, reflected about the axis (see Fig. 5).

The most obvious way to draw a stroke in a sym-
metric manner is to draw a stroke within the symmet-
ric area, then draw its reflection about the reflection
axis as shown in Fig. 6a. We call the initial stroke
from virtual start point s to virtual end point e that
the reflection is based upon the defining stroke, and
the reflection the reflected stroke, which can be drawn
from sR (the reflection of s) to eR (the reflection of e)
or vice versa.3

Given a defining stroke z, its reflected stroke zR (rel-
ative to an axis a) is said to be an exact reflection if
zR is z’s mirror image about a and they are separated
by a pen-up. Exact reflection is not required to have
a stroke that exhibits mirror symmetry (see §4.3). A
symmetric stroke is the combined result of a defining
stroke and a reflected stroke. A valid point, relative
to an axis a, is any point that is contained within the
symmetric area defined by a (see Fig. 5). A valid defin-

ing stroke, relative to an axis a, is a defining stroke
consisting solely of valid points within the symmetric
area defined by a. A valid symmetric stroke is the
composition of a valid defining stroke and its reflected
stroke. We define a valid symmetric stroke that holds

the property of exact reflection to be the disjoint case.
As a disjoint case has the property of exact reflection,
its length will always be even.

The product of the number of ways to draw a defin-
ing stroke and the number of ways to draw its reflected
stroke provides the number of ways to draw a symmet-
ric stroke, excluding additional cases (§4.3 discusses
the latter, namely the continuous case and the enclosed
shape case).

4.3 Continuous and Enclosed Cases

A point in an encoded defining stroke is potentially

continuous if it lies within a cell that is either cut by
the reflection axis a in question, or adjacent to a when
a is on a grid line. If a point p is potentially contin-
uous, its reflection pR is in the same cell as p or in a
neighbouring cell, and thus the stroke can be drawn
directly from p to pR without a pen-up. When the
start and end points of the defining stroke are poten-
tially continuous, the three most straightforward ways
to draw the resulting symmetric stroke are as follows:
disjointly (the disjoint case – recall §4.2), as one contin-
uous stroke (the continuous case), or as one continuous
enclosed stroke (the enclosed case).

A symmetric stroke can be drawn as a continuous
case when the defining stroke’s end point is potentially
continuous. We define the continuous case as when the
defining stroke continues through a to the reflected
stroke, creating a single, continuous symmetric stroke.
For example, the encoding for Fig. 6b would be: (1,1),
(1,2), (1,3), (1,4), (2,4), (3,4), (4,4), (5,4), (5,3), (5,2),
(5,1), ending with a pen-up. The stroke could also
be drawn in the reverse order. Examples of the same
visual representation of a ‘U’, with one disjoint and
the other continuous, are shown in Figures 6a and b.
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Figure 5: Example symmetric areas for (a) the axis x = 1; and (b) x = 2.5

Note that the continuous case’s encoding is different,
depending on whether a cuts a set of cells or is on
a grid line. If a cuts a set of cells as in Fig. 6b, the
defining stroke’s endpoint e is the same as its reflection
eR. Since there is no pen-up to separate e from eR, it
cannot appear in the encoding twice, thus eR does not
appear in the resulting encoding. If a is on a grid line
(Fig. 6c), e and eR reside in different cells, and eR does
appear in the resulting encoding.

A symmetric stroke can be drawn as an enclosed case
when both the defining stroke’s start and end points
are potentially continuous. We define the enclosed case
to be when the defining stroke continues through a

to the reflected stroke, and then joins back up with
the defining stroke, creating an enclosed shape (e.g.
Fig. 7). When a shape is enclosed, the drawing may
start and end at any point in the shape and still retain
its mirror symmetry. As with the continuous case,
the enclosed case’s encoding is different, depending on
whether a cuts a set of cells or is on a grid line. The
continuation of the defining stroke into the reflected
stroke will be encoded as in the continuous case; the
difference between these two cases is the encoding to
join the reflected stroke back into the defining stroke.
When a is on a grid line, the start point of the defining
stroke is repeated as the last point of the user’s stroke
(e.g. Fig. 7b). When a cuts a set of cells (e.g. Fig.
7a), it is the same as the continuous case since s = sR,

enclosing the shape. Thus, to avoid double-counting,
we exclude from the continuous case, the cases where
s is potentially continuous.

4.4 Smaller Graphical Dictionaries

It is in an attacker’s best interest to reduce the graph-
ical dictionary size to decrease the attack time and
increase probability of success relative to the effort ex-
pended. A logical way to attempt to do so is to assume
that it is more likely for a user to choose the center-
most axes as the reflection axes. We define Class Ia

as those passwords in Class I whose components (re-
call §3) are symmetric (in their own right, or pairwise)
about the center 3 of each set of axes (i.e. the marked
axes in Fig. 8). This produces pseudo-symmetric draw-
ings (recall §4.2, Fig. 3b). This optimization of the
graphical dictionary reduces its size as a function of
the grid size. We also define Class Ib as those in Class
I whose components are symmetric about the center
vertical and horizontal axes. This produces drawings
with global symmetry. The Class Ib dictionary is a
subset of the Class Ia dictionary, which is a subset of
the Class I dictionary.

If pseudo-symmetry is considered more likely than
global symmetry, the attacker may choose to use those
passwords that are composed of strokes symmetric
about a small set of close axes, such as Class Ia. The
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Figure 7: Different types of the enclosed shape case where the axis in (a) cuts a set of cells and (b) is on a grid line. (a)
shows all possible representative start/end points.

size of the dictionary will increase exponentially with
each additional axis considered, meaning that the time
to exhaust the dictionary is reduced by this method,
particularly with higher values of Lmax. Class Ib cap-
tures all passwords that are globally symmetric and
centered about the grid (vertically and/or horizon-
tally), plus those that have components symmetric
about the center vertical and horizontal axes (e.g. the
coffee cup in Fig. 9). If the user subconsciously uses
the grid to frame the drawing (i.e. using the grid as
part of the drawing’s overall symmetry), the resulting
drawings would be globally symmetric about either of
the center axes.

4.5 Quantifying the Memorable Pass-

word Space

Our general approach to quantify |S| (recall §4.2) is to
determine how many DAS passwords in S are of length

at most a given maximum password length Lmax. The
composite strokes of each password in S have defin-
ing strokes that connect a given virtual start and end
point in the symmetric area. Counting all passwords
of length at most Lmax and defining passwords in
terms of strokes follows Jermyn et al. [11]; however,
our method for defining the set of strokes of a given
length is entirely different, and only symmetric strokes
are included in the set.

The key points of our method of quantifying |S| are
discussed in this section (for more details see [25]).
Generally, the base formula for defining the set of
strokes does the following: for every possible virtual
start point s = (x, y), and end point e = (x, y) in a
given W ×H grid, we determine the number of ways to
draw a symmetric stroke (symmetric about any valid
axis in A) of length ` based on a defining stroke that
joins s to e. The reason for specifying s and e is so
we know explicitly whether s and/or e are potentially
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Figure 8: Highest probability reflection axes. The thickest

axes are the vertical and horizontal center axes. Adjacent

axes are marked in a thinner arrowed line.

continuous (recall §4.3) in order to enumerate the con-
tinuous and enclosed cases.

The number of defining strokes from s to e is enu-
merated by examining the number of permutations of
up, down, left, and right movements that join s to e

while remaining within the bounds of the symmetric
area, for all valid axes in A. The primary consider-
ations in this method are: path diversions, and the
amount of room between the current position and the
bounds in every direction within a given symmetric
area.

The number of possible diversions for a given s, e,
`, and axis a ∈ A is based on the difference between
the desired defining stroke length `

2 and the minimum
length path (stroke with the least number of cells) that
joins s to e. The difference between `

2 and the mini-
mum length path required to join s to e is the number
of extra cells that should exist in the stroke from s to
e that divert from the minimum length path. In order
for the defining stroke with diversions to connect s to
e, each diversion must be paired with a cell crossing in
the opposite direction to reconnect with the minimum
length path. An example of a diversion is provided in
Fig. 10.

Room is the number of cell crossings in a given direc-
tion that can occur from s, before the defining stroke
goes out of the symmetric area bounds in question. If
at any point in the defining stroke, the number of left
cell crossings exceeds the number of right cell crossings
by more than the amount of left room, the defining
stroke is invalid. The use of room in other directions
is analogously defined. Given a starting point s and
the symmetric area, we know the amount of available
room in each direction. For example, in Fig. 11, right
room = 2, left room = 1, top room = 1, and bottom
room = 3.

When ` is even, the symmetric strokes enumerated

for a given s and e are a combination of the disjoint,
continuous, and enclosed cases. When ` is odd, the
symmetric strokes enumerated for a given s and e are
a combination of the continuous and enclosed cases.
These sets intersect due to the nature of our counting
method. In determining the size of an overall memo-
rable password space, overlaps must be accounted for
to avoid double-counting. Fig. 12 gives a representa-
tive illustration of how the strokes intersect with one
another when ` is even (more specifically, ` = 12);
when ` is odd, the disjoint case is void (recall §4.2).

If a symmetric stroke z has a symmetric defining
stroke zD, and a symmetric reflected stroke zR, z is
the same as two independent symmetric strokes, which
can be independently included in S (i.e. they are ei-
ther continuous symmetric strokes or enclosed sym-
metric strokes). Thus, we must ensure that all disjoint
case symmetric strokes that have symmetric defining
strokes are subtracted from the count.

Some enclosed shapes will be double-counted by this
method since an enclosed stroke may be symmetric
about both a horizontal axis a ∈ Ah and a vertical
axis a ∈ Av (e.g. Fig. 13). The double counting is due
to counting all possible start/end points of an enclosed
shape case. The enclosed shapes that are symmetric
about an a ∈ Ah and an a ∈ Av can be identified as
those whose defining strokes are symmetric. We iden-
tify and subtract those defining strokes that are sym-
metric continuous cases (including those whose start
point is potentially continuous). This involves deter-
mining the candidate axis ac and all candidate mid-
points m that will produce a continuous symmetric
stroke from s to e. These defining strokes must be
identified only once; we identify them when a ∈ Ah.
In Fig. 13, the symmetric defining stroke (about the
horizontal axis) is indicated as the circular dashed line.

We are aware of other smaller cases of overlap that
we have experimentally determined as insignificant to
the overall results. One such case is when the reflected
stroke is identical regardless of whether it is drawn
from sR to eR or from eR to sR, but is not an enclosed
case (e.g. lines that repeat over each other more than
once). Additionally, there is a smaller set of defin-
ing strokes that result in the same symmetric stroke
when reflected about one horizontal and another ver-
tical axis, which occurs when the second half of the
defining stroke is a 180 degree rotation of the first half
of the stroke. There may be other small cases of over-
lap that we are presently unaware of, but we believe
that the set we used will account for any overlap of
significant impact on the overall result.
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4.6 Approximate Size of Class I Mem-

orable Password Space

Table 1 gives sample results computed using the
method outlined in §4.5 (for details including equa-
tions, see [25]) for S (recall §4.2) and the intersection
of S with Class Ia and Class Ib memorable passwords
(recall §4.4), respectively denoted SIa and SIb. Val-
ues given are log2(number of passwords). SIa and SIb

both show an exponential reduction from the full DAS
space: SIb grows at an exponential rate of approxi-
mately 3.6 bits per unit increase in password length
and SIa grows at a corresponding rate of approxi-
mately 4.0, whereas the full DAS space and S grow
at a corresponding rate of approximately 4.8. The size
of the full DAS password space was double-checked us-
ing a variation of our method, and essentially agrees
with the results given in [11].

Each of the three subclasses of Class I memorable
passwords presented in Table 1 allow perceptually
quite distinct classes of drawings (recall Fig. 3 and
§4.4). We found the size of S to be surprisingly close

to that of the full DAS space; however, upon reflection
this is sensible, as the only requirement for a stroke to
be symmetric is that it is locally symmetric about any
axis in A (e.g. Fig. 3a), which includes the combinato-
rially large set of all permutations of dots and lines of
length two.

The smaller the set of axes used, the smaller the
graphical dictionary becomes. It is a reasonable strat-
egy for an attacker to narrow down the graphical dic-
tionary to a small number of axes, or at least prioritize
a search such that globally symmetric passwords (e.g.
Fig. 3c) are considered first. When a single axis (or
two) are considered at a time to produce globally sym-
metric passwords, each result will never be larger than
that for the two center axes, as the latter maximizes
the symmetric area in which the passwords can reside.
Thus, the maximum dictionary size of such a variation
would be at most a small constant factor, proportional
to the number of axes considered, of that using only
the center axes. We believe that the set of globally
symmetric passwords best captures the symmetry dis-
cussed in §3, and our intuition suggests that Class Ib
(e.g. Fig. 3c) is more likely than Class Ia (e.g. Fig. 3b),
which is more likely than Class I (e.g. Fig. 3a).

To provide context for the practical implications of
our results, we discuss how long it might take to per-
form a dictionary attack against the DAS scheme us-
ing each of the above graphical dictionaries. The exact
method used to perform a dictionary attack depends
on the authentication method used by the system. We
assume that authentication is performed by hashing
the entered password using the MD5 hash algorithm,
then comparing the hashed password to the password
file entry for the user.4 In this case, a dictionary attack
requires comparing the hashed value of each candidate
password to the hashed value of the target password,
hoping for a match. Here the attack time is at least
the time to hash each candidate password. Thus, we
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Figure 12: Relationship between different cases of symmetric strokes of length 12 on a 5 × 5 grid. Enclosed (reduced)
refers to the enclosed case, after removing double-counting. (Note: a stroke of length 12 implies a password of length at
least 12.)

tabulate the time required to hash all passwords in
each password set for comparison.

We calculate two sets of times: one where we as-
sume the attacker has one Pentium 4 3.2GHz machine,
and another where we assume the attacker has one
thousand such machines, with which linear speed-up
is achieved. It is reasonable to consider that a deter-
mined attacker could exploit one thousand, or even
one hundred thousand machines using a worm, to dis-
tribute the password-cracking load. Using an MD5
performance result of 3.66 cycles/byte for a Pentium

3 800MHz machine [10] (scaled to 3.2GHz), and a 512
bit block size, approximately 1.37× 107 hashes can be
performed per second per machine. Given the assumed
resources, the estimated time to generate the password
hashes is given in Table 2.

The times provided in Table 2 highlight the implica-
tions of the graphical dictionary size. Assuming that
we want an attacker to require an average of 10 years
to exhaust these dictionaries with 1000 computers at
3.2GHz, the dictionary size must be approximately
263. Referring to Table 1, our Class Ib dictionary
(global symmetry) is above this size when Lmax = 18.
This implies that for this level of security (and a 5× 5
grid), DAS users should choose passwords of length at
least 18.

Note that an attacker may achieve success substan-
tially faster than the times given in Table 2 if dictio-
nary entries are ordered according to their probability
of occurring. For example, if the entire Class I pass-
word dictionary was used, it would be reasonable to
order it such that all those that also fall into Class



Lmax 1 2 3 4 5 6 7 8 9 10

Full DAS space 4.7 9.5 14.3 19.2 24.0 28.8 33.6 38.4 43.2 48.1
(i) S 4.7 9.5 14.3 19.1 23.9 28.7 33.6 38.4 43.2 48.0
(ii) SIa 3.3 7.7 11.6 15.7 19.8 23.8 27.9 31.9 36.0 40.0
(iii) SIb 3.3 6.9 10.5 14.1 17.7 21.2 24.8 28.4 32.0 35.6

Lmax 11 12 13 14 15 16 17 18 19 20

Full DAS space 52.9 57.7 62.5 67.3 72.2 77.0 81.8 86.6 91.4 96.2
(i) S 52.8 57.6 62.4 67.2 72.0 76.8 81.7 86.5 91.3 96.1
(ii) SIa 44.1 48.1 52.1 56.2 60.2 64.3 68.3 72.4 76.4 80.4
(iii) SIb 39.1 42.7 46.3 49.9 53.4 57.0 60.6 64.2 67.8 71.4

Table 1: Bit-size of graphical password space, for total length at most Lmax on a 5 × 5 grid.

Dictionary Time to exhaust Time to exhaust

(Lmax = 12) (1 machine) (1000 machines)

Full DAS Space 541.8 years 197.8 days
S 505.6 years 184.5 days
SIa 255 days 6.1 hours
SIb 6 days 8.7 minutes

Table 2: Time to exhaust various dictionaries (3.2GHz machines, 5 × 5 grid).
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Figure 13: An enclosed shape symmetric about a horizon-

tal and vertical axis; it would be double-counted by our

approach, without explicit subtraction.

Ib are first, followed by those remaining that fall into
Class Ia, etc. Note that if the target passwords are not
in any of the above dictionaries, the attack will fail.

Some of the larger textual password dictionaries con-
tain approximately 4 × 107 entries [19]. Our smallest
graphical dictionary exceeds this number of entries for
Lmax ≥ 8. This implies that even if users choose the
globally mirror symmetric passwords we have defined,
provided the password length is at least 8, the DAS
scheme may still offer greater security than textual
passwords against dictionary attacks.

5 Additional Observations and Future

Work

One may question the likelihood of users choosing sym-
metric graphical passwords, based solely on cognitive
studies on visual recall. It is interesting to note that
out of the 8 example passwords in the original DAS pa-
per [11], 5 fall under our definition of globally symmet-
ric and 7 fall under our definition of locally symmet-
ric. We believe it is difficult to conjure many visually
pleasing patterns that do not exhibit symmetry.

The graphical dictionaries discussed earlier do not
include repetition symmetry when the components
are asymmetric (e.g. Fig. 15) or rotational symmetry.
These two forms of symmetry could be classified as
Class II and III memorable passwords. These symme-
tries were not addressed in this analysis as cognitive
studies report that they do not hold the same special
status as mirror (reflective) symmetry in human per-
ception. It is unknown whether people are as likely to
recall repetitive or rotational symmetry more or less
efficiently as mirror symmetry. It would be interest-
ing to explore the effect of adding these two forms of
symmetry on our graphical dictionaries.

Another interesting direction would be to determine
the effect on a dictionary of limiting the number of
strokes in DAS passwords to e.g. 3 or 4. One psycho-
logical study [7] has shown that people optimally recall



Figure 14: Representative Venn diagrams (log2) illustrating the size relationships of each set in Table 1 to the full DAS

space (Lmax = 12, H = 5, W = 5). Each outer ellipse represents the full DAS space; the darker inner areas represent (i)

S, (ii) SIa, and (iii) SIb.
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Figure 15: DAS password with repetitive symmetry and

without mirror symmetry.

6 to 8 dots in a pattern when given 0.5 seconds to mem-
orize each. Another study [9] found that the number
of dots recalled in different grid sizes decreases dras-
tically after 3 or 4 dots. Note that a user must recall
two points for each stroke: the start and end points. A
conservative analogy of how these studies relate to our
dictionaries is to assume users naturally recall at most
4 strokes. An attacker could use this knowledge to fur-
ther prioritize a dictionary and/or reduce its size. We
note that all permutations of dots that lie on a cell that
is cut by a reflection axis are counted in these graphical
dictionaries, as each is considered an enclosed case. All
permutations of dots form a significant part of the set
of enclosed cases (and the full DAS password space),
as the number of dot permutations for a given Lmax

is
∑Lmax

i=1 (W × H)i. The summation counts all pass-
words up to length Lmax; (W ×H)i counts all possible
dot permutations of length i, as each dot is of length
1 and there are (W × H) cells that may be chosen for
each dot. When all axes are used, Lmax = 12, H = 5,
and W = 5, the number of dot permutations is ap-
proximately 256. This is because when a password’s
strokes are longer for a password of fixed length, there
are fewer strokes and thus fewer permutations of its
composite strokes. This limitation would not restrict
the overall length of the password – it could still be
very long. We expect that if one models 4 as the max-
imum number of strokes per password, the size of the

Class I memorable password space will be significantly
less than our results for Lmax > 4. The implication of
this would be that DAS passwords may be less secure
than otherwise believed.

One way to increase the password space without in-
creasing the required password lengths would be to
increase the grid size. However, this may have a neg-
ative effect on the memorability of DAS passwords,
since it has been found that the recall performance of
subjects decreases as a function of the grid size [9].
Alternatively, the DAS password space could be in-
creased by adding user-selected characteristics to the
drawing such as colour, backgrounds, and textures.

Although the focus of our work is the hypotheti-
cal application of a mirror symmetric graphical dic-
tionary on the DAS scheme, this method of analysis
could be applied to a variety of other graphical pass-
word schemes. For example, Birget et al. [2] propose
the users be provided an image, and asked to choose a
given number of click points. One could assume that
a user would be more likely to choose symmetric ob-
jects in an image as click points. The same assumption
might be valid for the Déjà Vu scheme [6], where the
attacker would presume the user’s portfolio is more
likely to contain symmetric random art images.

6 Concluding Remarks

Our results suggest that a user’s tendency to recall cer-
tain types of images may aid an attacker in creating a
graphical dictionary for dictionary attacks against the
DAS scheme. If or when graphical passwords become
commonly used, this information could be used (as is
textual dictionary information) in recommending pass-
word lengths and properties for graphical password
users, and in performing proactive graphical password
checking [28]. Studies on how users actually do use
graphical password schemes would result in even more
specific recommendations.

Although this analysis examines the memorability of
DAS passwords from the view of the visual and tem-



poral structure of the drawing, it does not consider
other factors of DAS passwords that may affect mem-
orability. One such factor is the number of coordinates
and strokes that people can recall when given enough
time (recall §5). It is unknown whether the numbers
cited for the number of coordinates people recall are
a function of the time given to examine the pattern.
Based on our class of memorable graphical passwords,
we can guess what sort of images people are likely to
draw; the complexity of these images in terms of pass-
word length or number of strokes is a separate issue.

Another factor one may expect to affect memorabil-
ity of a password is the temporal order of the draw-
ing. It is still unclear as to whether the memorabil-
ity benefits of pictures would be distorted due to the
need to not only recall the visual image associated
with the picture, but the order in which it must be
input. If the temporal order is a complicating factor
that adds significant complexity to what users must
recall, they may be more likely to choose single-stroke
(or fewer-stroke) passwords. This could also be used
to an attacker’s advantage, providing an improvement
to the graphical dictionary of mirror symmetric graph-
ical passwords. A conservative variation of this con-
cept was used in our graphical dictionaries: we as-
sumed that users would use symmetry in both a local
and global scope, local being the actual stroke drawn,
global being the relationship between the strokes to be
a symmetric password when viewed as a whole.

We believe that this work provides a significant ex-
tension to the analysis of graphical passwords – it
shows promise for the security of graphical passwords
and gives incentive for their further study. This work
has also raised many new and interesting questions for
how to pursue research in this area (see §5), suggest-
ing there is much room for future work, in graphical
password security and in related psychological studies.
Psychological studies that allow a subject unlimited
or a reasonably bounded time to memorize a dot se-
quence or grid drawing would be useful. The results
could be examined for an upper bound on how the
number of dots or complexity of the drawing could af-
fect the memorability of the pattern, and thus what
password lengths people are likely to choose. Simi-
larly, psychological studies on how temporal order af-
fects memorability of dot patterns or grid drawings
would be useful in determining the type and length of
strokes people will use within their password. Stud-
ies to show how grid size affects the memorability of
drawings and what sort of graphical passwords users
choose in practice would be helpful. Finally, exten-
sions or alternatives to the DAS encoding scheme may
improve security by increasing the size of the resulting
password space.
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Notes

1Increasing the grid height and/or width will increase
the dictionary size for any given length. A length of 8 is a
quite simple DAS password; see example passwords in [11].

2Note that rectangles are a subclass of our class of mem-
orable passwords.

3Note that when the defining stroke is drawn from e to
s, it is considered a different defining stroke.

4An alternative is to use the hashed password as a cryp-
tographic key for decrypting a check-word for authentica-
tion; this key might also be used to encrypt files.
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