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Lookahead Pairs and Full Sequences:
A Tale of Two Anomaly Detection Methods

Hajime Inoue Anil Somayaji
School of Computer Science

Carleton University
Ottawa, Canada K1S 5B6

{hinoue, soma}@ccsl.carleton.ca

Abstract— Sequence-based analysis has been both a
widely imitated and widely criticized approach to anomaly
detection. In virtually all of the follow-up work to Forrest
et al. (1996), though, the distinction between the initially
proposed “lookahead pairs” and the follow-on “full se-
quence” analysis methods has been overlooked. We have
discovered that this oversight is significant: specifically,
here we demonstrate that, on previously published and
well-studied datasets, lookahead pairs produce significantly
fewer false positives. Although lower false positive rates
make lookahead pairs an attractive system call modeling
technique, their usefulness may be compromised by an
increased vulnerability to mimicry attacks. This threat
can be mitigated through the use of larger sequences.
Here we show that lookahead pairs produce relatively few
false alarms even with longer sequences (n > 10); we
also demonstrate a new technique, random schema masks,
which permits the use of even longer sequences. With these
new results and techniques, we conclude that the lookahead
pair method should be considered as one of the benchmark
techniques for modeling system calls.

I. INTRODUCTION

Program-level anomaly detection has been a topic of
research in computer security for more than a decade. It
holds the promise of detecting and intercepting attacks
on network servers and applications in real-time, poten-
tially preventing system damage or disclosure of confi-
dential information—all without requiring signatures or
handwritten specifications of legal behavior. The nature
of anomaly detection, however, means that this promise
comes with significant caveats: legitimate but unusual
behavior can be flagged as anomalous (false positives),
and malicious behavior can sometimes be classified
as “normal” (false negatives). Developing methods that
achieve the appropriate balance between low false alarm
rates and high sensitivity to attacks is the key challenge
for anomaly-based intrusion detection.

The earliest and most influential program-level
anomaly detection strategy is based on monitoring se-
quences of system calls. First proposed by a group at

the University of New Mexico led by Stephanie Forrest
[3], and that included Somayaji, it has been studied and
criticized by many other researchers primarily on two
grounds: that it suffers from a high false positive rate
[11], and that it is susceptible to evasion by attackers
via “mimicry attacks” [18]. It has been less widely
appreciated, though, is that in the early literature on
system call sequences, two modeling methods were
proposed: the initial “lookahead pairs” [3] method and
the later “full sequence” [2], [4] method. Virtually all
of the literature on system call sequence-based intrusion
detection uses the full sequence method; the notable
exception is pH, a real-time intrusion detection and
response system [13], [12]. In this paper we argue that
the differences between these two modeling methods are
more significant than has been previously appreciated.
In particular, we have found that the lookahead pairs
method has a clear advantage in false positive (false
alarm) rates while still maintaining the ability to detect
real intrusions.

Lookahead pairs generate fewer false positives be-
cause they generalize over previously observed se-
quences; this same quality also makes the lookahead pair
method less sensitive to some attacks and more vulner-
able to mimicry attacks than the full sequence method.
We note, however, that the sensitivity of sequence-based
methods can be improved through the use of longer
sequences (but at the cost of more false positives). We
have found that lookahead pairs perform remarkably well
with longer sequences than have been typically used in
the literature (n > 10). Here we also present a new
technique, random schema masks, that makes the use
of even longer sequences feasible with both lookahead
pairs and full sequences.

The rest of this paper proceeds as follows. In Section
II, we explain the lookahead pairs and full sequence
methods in detail. Section III presents a comparison
of the two methods in terms of profile size and false
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positive rates, while Section IV presents results on the
feasibility of random sequence masks. In Section V, we
give a brief overview of related work in modeling system
call sequences. Section VI discusses the limitations and
implications of this work. Section VII concludes the
paper.

II. MODELING SYSTEM CALLS

In this section we motivate and explain both the looka-
head pairs and full sequence methods. We also discuss
a few subtle differences between our implementation of
these algorithms and the implementations described by
Forrest et al. [3] and Hofmeyr et al. [4], respectively.

Profiles for both methods are parameterized by a sin-
gle value, the window length, referred to as w. Profiles
are generated by observing the system-call stream during
execution.

Before we present a formalization of the two learning
methods, we introduce them using an example, shown in
Figure 1. The example system call stream (Figure 1a),
consists of 11 system calls. The code it represents reads
the metadata for two files, opens them, moves the file
pointer in each, reads from each, and then closes them.
In both the simulator and in operating systems, system
calls are actually represented by integers.

We present the profile of the full sequence (FS)
method (Figure 1b), first. It uses a window length of
4. In this profile, we can see that in row 1, the first
system call sequence is fstat, with sentinel in the other
positions. Unlike in the original Forrest et al papers [3],
[4], we use sentinels to initialize the system, allowing
the system to signal anomalies at the earliest possible
moment, following the pH example [12]. The sequences
are added to the profile as they appear in the stream,
until row 9 (the last row). In row 9, the system call in
current is close, not read, because <read, lseek, open,
fstat>, already appeared in row 3. The finished profile
is a set of all unique sequences of length 4.

Generalization only occurs in the full sequences
method through the window length. Every legal se-
quence seen during anomaly detection must have been
observed during training. However, because different
code paths can share sequences, the representation allows
for “jumps” between code paths that the program text
would never allow. Such “impossible paths” of execution
potentially make it much easier for an adversary to craft
attacks that could evade detection by a sequence-based
anomaly detector [17].

The lookahead pairs (LAP) profile for the sample
data (Figure 1c) also uses a window length of 4. The
difference between the FS and LAP methods is that the

system calls are indexed on the current position: all rows
with the same current system call are merged. During
testing, any sequence is then allowed that contains one
of the valid system calls in the appropriate position in
the row for the current system call.

For example, consider row 1 of the LAP profile. On
the first system call of the trace, fstat, the pairs <fstat,
sentinel, sentinel, sentinel> is added to the profile. At
system call 7, instead of a new sequence being added, the
previous entry is modified to <fstat, {sentinel, close},
{sentinel, read}, {sentinel, read}>.

The LAP method allows both “impossible paths” gen-
eralization as well as substitutions. To illustrate, consider
the previous example. Legal system-call streams under
the LAP method would include <fstat, close, sentinel,
sentinel> and <fstat, close, read, sentinel>, which
do not appear in the original stream.

Now we introduce a formalization of the two methods,
adapted from Somayaji’s dissertation [12]. Let

C = alphabet of possible system calls and a sentinel
c = |C| (221 in Linux 2.4, 317 in Linux 2.6)
T = t1, t2, . . . , tτ |ti ∈ C (the trace)
τ = the length of T
w = the window size, 1 ≤ w ≤ τ
P = a set of patterns associated with T and w

(the profile)

For the full sequences (FS) method, the profile Pseq is
defined as:

Pseq = {〈si, si+1, . . . , sj〉 : si, si+1, . . . , sj ∈ C,
1 ≤ i, j ≤ τ,
j − i + 1 = w,
si = ti,
si+1 = ti+1,
. . .
sj = tj}

Alternately, for the lookahead pairs method, the profile
Ppair is defined as:

Ppair = {〈si, sj〉l : si, sj ∈ C, 2 ≤ l ≤ w
∃p : 1 ≤ p ≤ τ − l + 1,

tp = si,
tp+l−1 = sj}

The difference in generalization can be quantified by
comparing the total number of sequences each profile
method recognizes. The number of sequences the FS
method recognizes is simply the number of unique
sequences it saw during training. The number of se-
quences (S) the LAP recognizes must be calculated
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fstat, open, lseek, read, read, close, fstat, open, lseek, read, close

(a)

position 3 position 2 position 1 current
sentinel sentinel sentinel fstat
sentinel sentinel fstat open

fstat open lseek read
open lseek read read
lseek read read close
read read close fstat
read close fstat open
close fstat open lseek
open lseek read close

(b)

position 3 position 2 position 1 current
{sentinel, read} {sentinel, read} {sentinel, close} fstat
{sentinel, read} {sentinel, close} {fstat} open
{sentinel, close} {fstat} {open} lseek
{fstat, open} {open, lseek} {lseek, read} read
{lseek, open} {read, lseek} {read} close

(c)

Fig. 1. An example system call stream (a), the sequence profile generated from that stream (b), and the lookahead pairs profile (c). The code
represented by this system call stream does similar things with two files: It reads metadata about the file (stat), opens the file, moves the file
offset pointer, reads from the file, and closes them. Both methods are shown using a window length of 4.

combinatorially:

S =
c∑

i=0

w∏
j=1

c∑
k=0

F(i, j, k) where

F(i, j, k) =
{

1 if 〈i, k〉j ∈ Ppair

0 otherwise

The total number of sequences recognized by a profile
is simply the sum of the number of sequences recognized
with each system call in the “current” position (charac-
terized by the summation with the i index). The total for
each system call is the product of the number of system
calls that are in the profile for each position. This is
calculated by adding them together in the second sum,
and the multiplication is then carried out by the product
indexed by j. We call S the size of the profile.

Generalization in LAP is dependent on the density
of the profiles. A “sparse” profile, with few system call
in each window position set, will recognize far fewer
sequences than one with larger sets in those positions.
We examine the generalization of LAP in practice in
Section III.

In the experiments described in this paper, we imple-
mented the full sequence and lookahead pairs methods as
described above; however, we also added some code to
handle a few special cases that are not directly addressed
in the early work by the UNM group. These changes,
however, are in accordance with the online implemen-
tation of lookahead pairs developed for Somayaji’s pH
[13], [12].

In earlier work, sequences were not checked until
the window filled up; that is, no anomalies could be
registered until l system calls were invoked, allowing
potentially dangerous behavior. In this research we create
entries and check for anomalies after every system call.
We then enter a special, non-existing sentinel system call
in the empty positions for the first l − 1 calls.

In addition, we treat two system calls as special: fork
and execve. When a fork occurs in the system call
stream, we make a copy of the system-call sequence
at that point of execution and use it to initialize the
sequence of the new process. This makes sense because
a fork carries almost all the state of its parent process.
Also, this prevents a process from using fork to avoid
anomaly checks.
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With the execve call we reinitialize the sequence
window. When an execve is called, the operating
system loads a new program binary into the currently
running process, destroying most the process’s previous
state. In our simulator we continue using the current
profile. This differs slightlywith the behavior of pH,
which reinitialized the sequence window and switched
profiles based on the actual executable being launched.
Because the data files do not contain arguments, we
cannot simulate this behavior.

III. FULL SEQUENCES VERSUS LOOKAHEAD PAIRS

We developed our own anomaly detection simulators
for the lookahead pair and full sequence models. The
UNM group never released the original simulator used in
the lookahead pairs studies. They did release the source
code used in the sequence studies (stide), but given the
changes we used in Section II, we felt it easier to write
our own simulator.

We verified our own version of full sequences against
stide. Unfortunately, stide 1.1, the version released
by UNM in 1998 [5], no longer compiles on modern
systems. We rewrote stide to use modern C++ template
mechanisms and checked that the results of stide were
similar to our own simulator in full sequence mode.1 The
results are not exact because the different behavior after
fork and execve.

Our tests are against data provided by the UNM group
[1]. We report data from four different traces:

1) lpr-mit: 1942917 training calls and 811953
testing calls (about a month of data from many
different machines).

2) named: 21 training days (6,256,177 calls); 12
testing days (2,974,395 calls).

3) sendmail: 29666817 training calls and
14833409 testing calls.

4) xlock: 11,065,759 training calls and 5,532,880
testing calls (approximately 2 days total).

We believe these are the most interesting of the data
traces available. Most of the other traces available from
UNM are either synthetic or are of less interesting
programs, such as login or ps.

On each, we attempted to divide the raw traces with
two thirds as training and one third as testing. On the
lpr, sendmail, and xlock traces we did this by
using system call counts. On the named data we divided
the trace into training and testing by using the date logs.
Note that this training/testing division is different than
that used by Warrender et al. [20].

1stide 1.2 is now available from UNM [1].

Our analysis concentrates on named, because we have
complete kernel logs from that trace. Those logs allow
us to calculate false positive per day rates which are
more useful in determining anomaly IDS performance.
Such logs were either not available or not appropriate
for calculating per-day false positive rates for the other
three data sets.

Table I presents the false positive rates per system
call. We used 14 different window lengths from 2 to
128. We were not able to gather the largest data sizes
for full sequences because of the prohibitive runtime of
our full sequence analysis program when using very long
sequences.

There are two conclusions to draw from the data: 1)
results vary widely depending on the trace, and 2) looka-
head pairs have significantly smaller false positive rates
than full sequences. Our first conclusion merely confirms
the result Warrender et al. found in comparing alternative
models of system call-based anomaly intrusion detection
[20]. The second result is more interesting.

The lookahead pairs false positive rates are lower
than the full sequence rates for each of the traces.
On the named and xlock traces the differences are
dramatic. Figure 2 shows the ratios for the four traces
over the various window lengths. The lookahead pairs
false positive rates are a minimum of ten times lower,
sometimes much lower, for both named and xlock.

The ratios for lpr are more modest. We believe
insufficient training accounts for this discrepancy. It is
the smallest trace, and it is also the one whose data
comes from many different machines. A greater diversity
coupled with less training leads to higher false positive
rates for both lookahead pairs and full sequences, leading
to a smaller discrepancy in performance.

The ratios for sendmail fall in between the two
groups. This trace has the largest number of system calls,
but its behavior is atypical because of the large number
of forks. Still, the full sequences method experiences
more than twice as many anomalies as lookahead pairs
for window lengths long enough to detect attacks.

The reason behind the difference in false positives
is due to the extra generalization of the LAP method.
One can compare the two methods by looking at the
“size” of each profile—the number of unique sequences
it recognizes as normal. Table II shows the sizes of the
profiles for the LAP and FS methods for each window
sizes. For windows greater than 4 the LAP method
recognizes many magnitudes more sequences than the
FS method.

Figure 3 plots the ratios of the LAP sizes to FS
sizes for the four traces over the selected window sizes.
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lpr named sendmail xlock
Window LAP FS LAP FS LAP FS LAP FS

2 1.85E-05 0.00E+00 0.00E+00 0.00E+00 1.03E-04 0.00E+00 9.04E-08 0.00E+00
3 3.69E-05 1.85E-05 0.00E+00 0.00E+00 1.51E-04 1.03E-04 1.81E-07 9.04E-08
4 6.16E-05 4.80E-05 0.00E+00 1.34E-06 2.07E-04 2.03E-04 2.71E-07 2.17E-06
5 9.11E-05 8.01E-05 6.72E-07 4.03E-06 2.41E-04 3.24E-04 3.61E-07 4.70E-06
6 1.17E-04 1.15E-04 1.01E-06 1.88E-05 2.66E-04 4.31E-04 4.52E-07 8.59E-06
8 1.50E-04 1.47E-04 2.35E-06 3.56E-05 3.31E-04 5.39E-04 9.04E-07 1.24E-05

10 2.00E-04 2.03E-04 3.70E-06 7.36E-05 3.80E-04 7.38E-04 1.08E-06 2.03E-05
12 2.27E-04 2.92E-04 5.72E-06 1.34E-04 4.28E-04 9.79E-04 2.17E-06 3.08E-05
16 4.77E-04 4.09E-04 1.04E-05 2.14E-04 5.27E-04 1.22E-03 2.80E-06 4.15E-05
20 6.93E-04 8.72E-04 1.51E-05 5.32E-04 6.30E-04 1.83E-03 3.71E-06 6.33E-05
24 1.15E-03 1.90E-03 2.15E-05 1.21E-03 7.36E-04 2.56E-03 4.79E-06 8.25E-05
32 1.50E-03 3.28E-03 2.79E-05 2.30E-03 8.93E-04 3.46E-03 6.33E-06 1.01E-04
64 2.62E-03 NA 4.37E-05 NA 1.37E-03 NA 1.05E-05 NA

128 4.06E-03 NA 6.32E-05 NA 1.76E-03 NA 2.21E-05 NA

TABLE I
FALSE POSITIVE RATES PER SYSTEM CALL FOR THE FOUR TRACES FOR BOTH LOOKAHEAD PAIRS (LAP) AND FULL SEQUENCE (FS)

ANALYSIS METHODS.
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Fig. 2. Window length versus the ratio of the false positive rates of full sequence and lookahead pairs models for the four traces. Note the
logarithmic scale for the false positive ratios.
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shape, due to the slow rate of growth of FS profiles, is dominated by the LAP profile growth. Note the logarithmic scale for the false positive
ratios.

lpr named sendmail xlock
Window LAP FS LAP FS LAP FS LAP FS

2 1.98E+02 1.98E+02 1.83E+02 1.83E+02 4.23E+02 4.23E+02 9.60E+01 9.60E+01
3 1.91E+03 3.40E+02 1.85E+03 3.45E+02 9.20E+03 1.20E+03 5.55E+02 1.50E+02
4 3.08E+04 4.38E+02 2.76E+04 5.16E+02 2.80E+05 2.30E+03 4.94E+03 1.97E+02
5 6.69E+05 5.25E+02 4.74E+05 7.18E+02 9.96E+06 3.63E+03 6.28E+04 2.37E+02
6 1.75E+07 6.04E+02 9.42E+06 9.58E+02 3.96E+08 5.23E+03 9.04E+05 2.72E+02
8 1.30E+10 7.72E+02 4.45E+09 1.57E+03 7.41E+11 9.16E+03 2.80E+08 3.35E+02

10 1.49E+13 9.52E+02 2.67E+12 2.44E+03 1.61E+15 1.45E+04 1.14E+11 3.87E+02
12 1.71E+16 1.15E+03 1.67E+15 3.61E+03 3.86E+18 2.12E+04 4.91E+13 4.36E+02
16 2.90E+22 1.64E+03 8.46E+20 7.36E+03 2.74E+25 3.91E+04 9.74E+18 5.30E+02
20 4.29E+28 2.20E+03 4.21E+26 1.35E+04 2.21E+32 6.34E+04 2.37E+24 6.16E+02
24 7.49E+34 2.84E+03 2.42E+32 2.26E+04 2.07E+39 9.39E+04 4.78E+29 6.97E+02
32 2.33E+47 4.31E+03 1.13E+44 4.89E+04 1.84E+53 1.67E+05 3.88E+40 8.57E+02
64 1.66E+97 NA 2.23E+91 NA 8.01E+109 NA 7.33E+83 NA

128 2.24E+199 NA 2.27E+185 NA 3.33E+223 NA 5.48E+171 NA

TABLE II
PROFILE SIZES (IN TERMS OF NUMBER OF REPRESENTED SEQUENCES) FOR EACH OF THE FOUR TRACES FOR BOTH LOOKAHEAD PAIRS

(LAP) AND FULL SEQUENCE (FS) ANALYSIS METHODS.
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Lookahead Pairs Full Sequences
Window Anomalies FP / call ×107 FP / day Anomalies FP / call ×107 FP / day

2 0 0.00 0.00 0 0.00 0.00
3 0 0.00 0.00 4 13.45 0.34
4 0 0.00 0.00 12 40.34 1.03
5 2 6.72 0.17 56 188.27 4.79
6 3 10.09 0.26 106 356.37 9.07
8 7 23.53 0.60 219 736.28 18.75

10 11 36.98 0.94 400 1344.81 34.24
12 17 57.15 1.46 638 2144.97 54.62
16 31 104.22 2.65 1581 5315.37 135.35
20 45 151.29 3.85 3590 12069.68 307.33
24 64 215.17 5.48 6845 23013.08 585.98
32 83 279.05 7.11 17920 60247.55 1534.08
64 130 437.06 11.13

128 188 632.06 16.09

TABLE III
FALSE POSITIVE RATES FOR THE named DATA SET WITH BOTH THE LOOKAHEAD PAIRS AND FULL SEQUENCE METHODS, USING SEVERAL

SEQUENCE LENGTHS.

These are computed using the profile generated by
our simulator and the equation described in Section II.
One might expect them to match Figure 2. However,
they differ greatly. Although three of the four traces
(excluding xlock) show exponential growth, the rate of
growth of false postiives is much, slower. Also, there is
not a qualitative match. The order from greatest to least
in false positive ratios (named, xlock, sendmail, lpr)
does not match the order of profiles size ratios (xlock,
named, lpr, sendmail).

Although we can explain some of the differences in
performance, other aspects are a bit more mysterious.
For example, we find the shape of the graph in Figure 2
a bit puzzling. The lpr and named trace ratios increase
gradually as the window length increases. The xlock
ratios, though, do the opposite. Also, neither the named
nor xlock show monotonic behavior, as one might
expect by the behavior shown in Figure 3.

Table III shows the false positive rates per system call
and per day for the named trace. Comparisons with real
time for false positive rates are a better indicator than per
system call because some programs make many more
system calls than others. Also, anomalies, for the most
part, are handled by human administrators. False positive
rates given in time units provides more information
about the feasibility of using such systems in production
environments.

We can see here that for named, lookahead pairs

perform much better than full sequences, even for small
window lengths. Full sequences creates more than one
false positive per day at window lengths of four. Looka-
head pairs do not impose that burden until lengths greater
than 10. At a window length of 32, lookahead pairs
experience a false positive about once every three and a
half hours, compared with more than one a minute for
full sequences.

Although lookahead pairs show much better false
positive rates than full sequences, it is not clear that
long windows (> 10) are feasible in production systems
due to performance reasons and absolute false positive
rates. At a length of 32, the lookahead pairs false
positive rate is 14 times greater than at 6, the value used
in the original UNM simulations. Furthermore, if one
implements lookahead pairs as in the pH system [12],
each profile check is 5 times as expensive and the profile
is 5 times as large. In the next section, we investigate
one strategy for mitigating the runtime and accuracy cost
of longer windows.

IV. RANDOM SCHEMA MASKS

One of the key results of Tan and Maxion’s work [16]
was that the performance of stide was highly dependent
upon sequence length. Specifically, they found that some
attacks could not be detected if the window length was
too small.

Longer windows increase the sensitivity of both the
lookahead pairs and full sequences methods, while also
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Fig. 4. A random window schema mask.

increasing false positive rates, as is evident in Table I.
While longer windows can help detect some types of
mimicry attacks, they cannot prevent all of them: if
an attack imitates a full trace of system calls that is
actually executed during normal operation, then neither
the full sequence or lookahead pairs methods are capable
of detecting the attack. However, longer sequences do
constrain an attacker’s ability to use “impossible paths”
to evade stide.

Here we investigate a system that may combine the
ability to increase the difficulty of mimicry and “im-
possible paths” attacks while maintaining both low false
positive rates and high performance.

A. Description

The basic idea is to maintain a large window length
while ignoring some of the calls within that window.
To illustrate this, consider Figure 4. The top list of
numbers represents a window of length 20, with 5 as
the most recent system call. The lines under the system
call numbers represent window schema, the system calls
we will actually consider. Here the size of the schema is
8, with the positions 0, 2, 6, 9, 10, 12, 14, and 18 chosen.
This can then be represented as the bottom sequence.

By using schema that mask out several positions in
the system call window we create another source of
generalization. This generalization should result in fewer
false positives while potentially maintaining sufficient
sensitivity to attack-generated anomalies.

B. Results

For several window sizes and schema lengths, we
randomly generated 10 schema masks and calculated
their false positive rates. We test the new representa-
tion against only named due to the large number of
experiments required. We believe these results translate
to other programs.

Table IV gives evidence for the potential benefits of
random schema masks. The false positive rates for each
window size are dramatically lower for both lookahead
pairs and full sequences using the schema masks. There
is one interesting difference to note, however. The ex-
pectation was that the false positive rate for each schema

size would be similar but larger than that for that using
windows without schema masks. This holds true for
lookahead pairs but not for full sequences.

For full sequences the false positive rates are much
lower. Why is this? It must be due to the generalization
of the “holes” in the schema mask. Such holes would
also permit more “impossible paths”; this fact does not
seem to affect the algorithms ability to detect real-world
exploits. When compared against the first exploit from
Warrender et al. [20], the number of anomalies signaled
by the simulator are similar to the unmasked versions.
Therefore, it seems that using schema masks may be a
viable way to extend window sizes.

Creating schema masks seems to create a generaliza-
tion that allows attacks through. This is theoretically the
case, but without knowing the schema mask beforehand,
an attacker would have to construct an attack considering
the window length instead of the schema size. The
attacker might consider finding an attack using substitu-
tions and relying on repeated attempts to determine the
masked positions in the schema, but this would involve
several, potentially thousands, of repeated attempts, and
would likely alert administrators before it succeeded.

V. RELATED WORK

Forrest et al. [3] first proposed that attacks on privi-
leged program be detected by detecting unusual behav-
ior, and that unusual program behavior could be detected
by monitoring system calls. In this first paper, they also
proposed a sequence-based method for modeling system
calls that they referred to as using “lookahead pairs.”
Although lookahead pairs performed well in their initial
experiments, follow-up work from the UNM group [2],
[8], [4], [20] instead switched to the “full sequence”
method. (See Section II for a full description of these
two methods.) The command-line analysis tool stide
(sequence time-delay embedding) was made available by
the UNM group along with most of the data sets that
were used for these papers. Note that stide only im-
plemented the full sequence method, not the lookahead
pairs method.

Many other researchers have built upon this work.
Although some of this literature focuses on applying the
UNM group’s sequential analysis technique to other data
sources [7], [14], the most significant work has focused
on critiquing their approach and proposing alternatives.
Wagner and Dean [17] were the first to note that an
attacker can potentially evade detection of a sequence-
based analysis system by “mimicking” normal behavior
(i.e. by generating system call sequences present in the
targeted program’s normal profile). Tan and Maxion [16]
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Lookahead Pairs Full Sequences
Window 6 8 10 6 8 10

12 0.78 (0.27) 1.20 (0.24) 1.34 (0.11) 1.11 (0.08) 1.46 (0.17) 1.85 (0.12)
16 1.06 (0.47) 1.60 (0.39) 2.05 (0.34) 1.69 (0.29) 2.58 (0.45) 3.49 (0.45)
20 1.52 (0.48) 2.09 (0.35) 2.46 (0.42) 2.21 (0.56) 3.99 (0.75) 5.40 (0.95)
24 2.00 (0.66) 2.59 (0.49) 2.85 (0.56) 3.04 (0.66) 5.18 (1.09) 9.25 (1.51)
32 2.01 (0.37) 2.82 (0.53) 3.35 (0.35) 4.36 (1.08) 8.46 (1.68) 15.83 (4.08)

TABLE IV
PER DAY FALSE POSITIVE AVERAGES (AND STANDARD DEVIATIONS) FOR LOOKAHEAD PAIRS AND FULL SEQUENCES WITH SCHEMA

MASKS. WINDOWS OF 12, 16, 20, 24, AND 32 ARE COMPARED WITH SCHEMA THAT USE 6, 8, AND 10 VALUES IN THE COMPACTED

SEQUENCE.

provided a theoretical analysis of the relationship be-
tween detection ability and sequence length for stide. In
so doing they introduced the concept of minimal foreign
sequences, which is the smallest injected sequence that
could be detected. They later followed up this work with
a full implementation of a mimicry attack on stide [15],
which was published shortly before Wagner and Soto’s
mimicry attack implementation [18]. Mimicry attacks
were recently automated by Kruegel et al. [9].

The documented limitations in stide have, in part,
inspired many others to develop alternative program
behavior modeling techniques. Alternatives such as rule-
based systems, frequency-based sequence detectors, and
hidden Markov models, were shown to not have sig-
nificant accuracy advantages relative stide, even though
such methods all require more computational overhead
[20]. Other methods, though, that incorporate additional
information such as program counter state [11], have
been shown to have lower false positives than stide.

Note that in all of this literature, the standard of
performance has been the full sequence method as
implemented by stide, not the lookahead pairs tech-
nique. For runtime performance and implementation
reasons, Somayaji chose to go with the lookahead pairs
model for pH, a system call-based real-time intrusion
detection and response system [13], [12]. Somayaji’s
dissertation [12] contained an entropy-based comparison
between lookahead pairs and full sequences showing
that lookahead pairs contained less information than full
sequences, especially for larger windows. No comparison
was performed on the basis of true and false positives.

Recently Wang, Parekh, and Stolfo [19] developed a
“randomized testing” approach to n-gram analysis as part
of their anagram network packet-based IDS. This tech-
nique is closely related to our random sequence masks;
however, they are focused on partitioning rather than
excluding data. Further, in the context of their (much

more complicated) system their randomization strategy
often increased the observed rate of false positives. An
interesting topic for future research is the evaluation
of different randomization strategies for sequence-based
anomaly detection methods in system calls, network
packets, and other domains.

VI. DISCUSSION

This research creates many questions about the learn-
ing and generalization ability of the different models of
program behavior we have analyzed in this paper. It is
remarkable that the dramatic difference in the perfor-
mance between lookahead pairs and full sequences has
never been documented before. After some preliminary
testing, the UNM group assumed that lookahead pairs
had similar behavior to full sequences and moved to full
sequences when an implementation became available.
The work on alternative models and mimicry attacks
then simply ignored the lookahead pairs method. One
master’s thesis [10] claimed that Hofmeyr showed that
“fixed sequences give better discrimination than looka-
head pairs”. It is true that full sequences generalize
less than lookahead pairs, but it has never been shown
that they are a better model for detecting intrusions.
Section III provides evidence that lookahead pairs is a
better model for intrusion detection than full sequences.
Indeed, lookahead pairs appear to be significantly better
than any of the data models explored in the Warrender
paper [20].

Arguably, the lookahead pairs method is a bet-
ter anomaly detection method than the full sequences
method because it generalizes more. That is, multiple
entries in the full sequences model correspond to one
entry in the lookahead pairs model. There are three
sources of generalization apparent in these models: the
finite window length in all the models, the substitutions
allowed in lookahead pairs, and the masked calls within

17



the windows in the schema masks models. According to
our analysis, these generalization methods empirically
generate fewer false positives.

It is an open question what the costs and benefits are
for each kind of generalization. Much of the literature
on mimicry attacks shows that larger windows, and thus
less generalization through window length, are better for
detecting attacks. However, the larger false positive rates
incurred through less generalization have driven research
in statically generated “models” of normal behavior that
cannot incur false positives. Model-based approaches
overgeneralize in other ways, however, leading to vul-
nerabilities beyond mimicry attacks [6].

The generalization from substitutions in the looka-
head pairs model is an even more puzzling problem.
The source of the difference in the behavior between
lookahead pairs and full sequences, described by the
generalization equation in Section II, does not fully
explain the differences between the two methods. If
the false positive rates were proportional to sizes, the
LAP method would have even fewer false positives,
and would potentially be unable to detect many true
positives. However, the UNM showed that for sizes
of 6 to 10 the two techniques had similar detection
capabilities [3], [20], [12]. This is an important problem
to solve because a decade of research, both within and
outside the UNM group, has assumed that full sequences
is better than lookahead pairs. Is this truly the case for
programs beyond those studied by the UNM group?

Another question generated by this research concerns
the false positive rates for full sequences with schema
masks. Those rates are both lower than the representative
window lengths, but also lower than the schema mask
size. This is not the case for the lookahead pairs method.
Could it be that adding “holes” to the representation
allows the full sequences model to mimic the substitution
generalization that apparently gives lookahead pairs its
advantage? Further research is needed to resolve these
questions.

VII. CONCLUSION

Given the large number of papers devoted to system
call based anomaly detection, it is remarkable that there
has never been a direct comparison between looka-
head pairs and full sequences. We have provided that
comparison in this paper. Although it was previously
assumed that full sequences were either better or similar
in performance to lookahead pairs, we have shown that
the opposite is true.

In addition, we have shown that anomaly systems
built around lookahead pairs are practical with long

window lengths, and that very long window lengths can
be accommodated through the use of schema masks. By
using random schema, an IDS can force an attacker to
craft attacks that assume a complete window length—a
more difficult task.

When referencing the UNM efforts, research in system
call based anomaly detection and mimicry attacks should
compare against both lookahead pairs as well as full
sequences. Our surprising results indicate that there is
significant scope for better theoretical understanding of
the program behavior.
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