
Detecting Intra-enterprise Scanning Worms based on Address Resolution

David Whyte, Paul C. van Oorschot, Evangelos Kranakis
School of Computer Science

Carleton University, Ottawa, Canada�
dlwhyte, paulv, kranakis � @scs.carleton.ca

Abstract

Signature-based schemes for detecting Internet worms
often fail on zero-day worms, and their ability to rapidly
react to new threats is typically limited by the requirement
of some form of human involvement to formulate updated
attack signatures. We propose an anomaly-based detec-
tion technique detailing a method to detect propagation of
scanning worms within individual network cells, thus pro-
tecting internal networks from infection by internal clients.
Our software implementation indicates that this technique
is both accurate and rapid enough to enable automatic con-
tainment and suppression of worm propagation within a
network cell. Our approach relies on an aggregate anomaly
score, derived from the correlation of Address Resolution
Protocol (ARP) activity from individual network attached
devices. Our preliminary analysis and prototype indicate
that this technique can be used to rapidly detect zero-day
worms within a very small number of scans.

1. Introduction

Scanning worms are rapidly evolving. Despite some
very promising recent proposals (e.g. see [18]), most
signature-based detection techniques are limited in their
ability to detect newly emerging worms. Compounding the
scanning worm detection challenge are the numerous worm
variants typically launched after an initial outbreak. Slight
code modifications enable worms to evade many signature-
based countermeasures.

Worm infected hosts can potentially initiate thousands
of infection scans per second [12] making automated sup-
pression and containment strategies necessary [13]. The de-
tection methods used within these automated schemes must
be fast and accurate to ensure minimal impact to legitimate
users. Most current worm propagation detection methods
are limited in: (1) their speed of detection, (2) their inabil-
ity to accurately detect zero-day worms, (3) their inability
to detect slow scanning worms, and (4) their high false pos-
itive rate.

Containment within an enterprise network typically in-
volves dividing the network into cells [4]. Although these

cells can be as small as a single system (i.e. host-based con-
tainment) in a large network, the individual cells could be
comprised of hundreds of hosts. The goal of such contain-
ment is to limit infection to individual cells; infection be-
tween hosts within a cell remains unchecked, with the po-
tential loss of the hosts within a network cell considered an
acceptable cost given the alternative of the entire network
becoming infected. In this paper, we propose a detection
technique that detects scanning worms attempting to prop-
agate between hosts within an individual network cell. For
the purposes of our approach, we define a cell as any portion
of a network within a common broadcast domain.

We propose a behavioral signature1 to detect scanning
worms within an enterprise environment based on the ob-
servation that a scanning worm targeting systems within its
own network cell exhibits anomalous behavior distinct from
normal Address Resolution Protocol (ARP) [15] activity;
infected systems trigger unusual ARP request activity as
they try to infect susceptible systems within their respective
network cells. More specifically, intra-cell worm-initiated
scans result in discernible behavioral changes in the amount
and pattern of ARP request activity of infected hosts, be-
cause a scanning worm targeting same-cell systems triggers
the broadcast of anomalous ARP requests.

Our Contributions. We present a technique, which we
have implemented and tested in a software prototype, to
both rapidly and accurately detect worm propagation within
enterprise network cells. Based on the following three fac-
tors, we derive an anomaly score for each individual de-
vice2, and use this as an infection indicator for each device
within a cell.

1. Peer list: connections to devices outside the set of in-
ternal devices a host normally interacts with.

2. ARP activity: increases in the average number of ARP
requests each host issues per unit time.

3. Internal network dark space [1, 2]: connections to va-
cant internal IP addresses (i.e. addresses not bound to
any active devices).

1Behavioral signatures [6] are used to describe common aspects of
worm behavior particular to a given worm.

2Hereafter by device, we typically mean a network addressable host
within a broadcast domain.

This approach offers significant performance improvement
from the dynamic queues used by current worm scanning
rate limiting techniques [22, 17] in discovering internal net-
work (i.e. intra-cell) worm scanning (see further discussion
in Section 2). Individually, each of these factors builds on
previous work (e.g. [22, 14, 20]). However, we have com-
bined them into a practical and tested enterprise detection
technique using a layer 2 (i.e. ARP) protocol.

In our test environment, our technique detected simu-
lated scanning worm activity with a minimum sustained
scanning rate of one scan per minute, within three scans,
with a very low false positive rate. The precision of
this first-mile detection enables the use of automated con-
tainment and suppression strategies [13] to stop scanning
worms before they infect other devices within a network
cell.

Our anomaly-based detection approach is appealing for
a number of reasons including the following:

1. Speed: the possibility to detect an infected system
within e.g. three scans.

2. Detection of zero-day worms: possible because the ap-
proach does not rely on the matching of existing worm
signatures to identify suspicious traffic.

3. Scanning rate independence: the approach can detect
both fast and slow scanning worms (assuming a sus-
tained scanning rate of at least one scan per minute -
although this is configurable).

4. Intra-cell protection: our approach addresses infection
of systems within a network cell.

5. Low-false positive rate: our prototype, albeit on a
small network (see Section 5.1), experienced only five
false positives within a two week period and this num-
ber could be further reduced (see Table 2).

Although certain marketing-related documentation of-
fers the possibility that intra-cell worm propagation is ad-
dressed in at least one available commercial product [2] (al-
beit not involving ARP), we are not able to find any de-
tails from available published materials. To the best of our
knowledge, our paper is the first in the open literature to
propose a method and detailed description for, and to report
on an implementation of, a detection technique that enables
scanning-worm detection within a network cell (i.e. intra-
cell propagation).3 Used in conjunction with other internal
scanning worm containment schemes that address propaga-
tion between network cells [20, 21, 22], our technique en-
ables a complete enterprise-wide scanning worm detection
capability (i.e. both intra-cell and inter-cell).

The sequel is structured as follows. Section 2 reviews re-
lated work. Section 3 outlines the basic approach. Section 4
discusses our prototype, which is analyzed in Section 5 with
details for a particular dataset and small testbed. Section 6
presents limitations. We conclude in Section 7.

3Here, we assume a network cell contains more than a single device.

2 Related Work

The ARP protocol has been the subject of so-called ARP
cache poisoning attacks [11], in which a device’s ARP
cache is updated with forged ARP request and reply packets
in an effort to change the MAC address of the device to one
in which an attacker can monitor or perform a denial of ser-
vice attack. Other than the involvement of ARP, our work
is unrelated to ARP cache poisoning.

A host-based solution to the scanning worm problem was
discussed by Williamson [22]. His approach is to limit or
throttle the rate of malicious code at the host by determining
if a system is trying to connect to new addresses. If so,
the connection is delayed in order to delay malicious code
propagation. The decision to delay and not drop suspicious
connections reduces the impact of false alarms while still
limiting the spread of malicious activity in the network.

Schechter et al. [17] present a hybrid approach to detect-
ing scanning worms using sequential hypothesis testing and
rate limiting. A first-contact connection is defined as a con-
nection attempt to a host that the system has not previously
connected with. A finite number of these first-contact host
addresses are kept in a queue and transition among three
states: pending, success, or failure. When the queue is full
and new addresses need to be added, the associated connec-
tions are subject to some form of performance penalty that
effectively rate limits new connections from the host.

Certain aspects of our detection technique are similar to
these rate limiting schemes. However, unlike dynamically
allocated queues that record a transient connection history
for a device, our queues are created during a training period
and maintain a complete history of unique internal connec-
tions for each device.

Schemes that characterize internal to remote connections
have to maintain a dynamic connection queue to accommo-
date the wide variance of host addresses the device may try
to connect to during normal network activities (e.g. Internet
web surfing). In contrast, we only need account for device
connections to internal systems within the network. In a
typical network environment (i.e. client server model), in-
ternal devices will try to access only a subset of the devices
within their local subnet. This hypothesis is confirmed by
our analysis in Section 5 (i.e. cf. Table 1, ARP Chain Size).
For any given device, our model is that connecting to de-
vices with which they have prior connection history should
occur at a higher probability than connections to devices
with which they have no connection history.

Ganger et al. [8] developed a software architecture to en-
able self-securing network interfaces. Packets are examined
as they are processed by host software where malicious ac-
tivity can be detected and potentially blocked.

Whyte et al. [21] used DNS activity to detect the pres-
ence of scanning worms within an enterprise network. The
observation of connections outside the network not pre-
ceded by a DNS query was considered anomalous and a
strong indicator of scanning worm activity.

Jung et al. [10] developed an algorithm called Threshold
Random Walk (TRW), to identify malicious remote hosts,
based on the observation that scanners are more likely to
attempt to access hosts and services that do not exist than
legitimate remote hosts. Weaver et al. [20] developed a
scan detection and suppression algorithm based on a sim-
plification of TRW. They use caches to track the activity
of both new connections and IP addresses to reduce the ran-
dom walk calculation, making the algorithm suitable for im-
plementation in both hardware and software.

Zou et al. [23] model requirements for the dynamic quar-
antine of infected hosts. They demonstrate that epidemic
thresholds exist for differing detection and response times.
This work provides a benchmark that any new proposed de-
tection algorithm could use to measure its efficiency. Singh
et al. [18] propose a method to automatically detect worm
propagation based on network traffic characteristics such
as highly repetitive packet content, and IP source and des-
tination address distributions. They have shown that this
method has the ability, with no human intervention, to gen-
erate worm content signatures with a low false positive rate.

Two commercial scanning detectors offer an alternate
approach to detect worm propagation. Forescout [1] and
Mirage [2] networks use a technique called dark-address
detection. These detectors either have knowledge of, or
route unoccupied address spaces within an internal net-
work and detect when systems attempt to connect to un-
used spaces. A variety of network-based solutions to the
scanning problem exist including Silicon Defense’s Coun-
terMalice [4] which is a worm defense solution that proac-
tively identifies and automatically blocks worm activity
within a network. The solution partitions the network into
cells and prevents worms from spreading between the cells.
Moore et al. [14] describe how large portions of routed
IP address space with little or no legitimate traffic can be
turned into a network telescope. The monitoring and an-
alyzing of unexpected traffic sent to a network telescope
provides opportunities to view Internet-wide security events
(e.g. denial of service attacks, Internet worms).

3 Basic Methodology and Approach

In this section we give a high-level overview of our ARP-
based scanning worm anomaly detection approach.

In larger enterprise networks, it is not unusual for net-
work segments to be either logically or physically sepa-
rated. This natural separation of networks can be leveraged
to contain worm propagation within distinct network seg-
ments or cells.

As has been noted elsewhere (e.g. see [21]), the propaga-
tion of scanning worms can be characterized as: local to lo-
cal (L2L), local to remote (L2R), or remote to local (R2L).
In L2L propagation, the worm targets systems within the
boundaries of the enterprise network in which it resides e.g.
scanning within network cells (i.e. intra-cell) or between

them (i.e. inter-cell).4 L2R propagation refers to a scan-
ning worm within an enterprise network targeting systems
outside of its network boundary. Finally, R2L propagation
refers to worm scanning from the Internet into an enterprise
network. Our approach addresses L2L worm propagation
within a network cell (i.e. L2L intra-cell); it does not ad-
dress L2L inter-cell, L2R, or R2L worm propagation.

3.1 ARP Anomaly Detection Approach

Devices that reside within the same network cell use
ARP rather than the Domain Name Service (DNS) to com-
municate. ARP is a layer 2 protocol (i.e. data link layer)
used by the IP protocol to map IP addresses to the physical
hardware (MAC) addresses of network devices. When a de-
vice needs to resolve a given IP address to a MAC address,
it broadcasts an ARP request. The ARP request packet con-
tains the sender’s IP address (source protocol address), the
sender’s MAC address (source hardware address), and the
destination IP address (target protocol address). Each de-
vice within the common broadcast domain receives this re-
quest. The protocol stipulates that only the device with the
specified destination IP address will respond with an ARP
reply. An ARP reply contains both the IP address and MAC
address of the device that responds. ARP activity is a nec-
essary precursor to communications between devices as it
provides the data link layer with the necessary mappings
between the associated IP and MAC. ARP was designed as
the intermediary between IP and MAC addresses within lo-
cal subnets. Other technologies such as Windows Internet
Naming Service (WINS), Internet Protocol (IP), and Do-
main Name Service (DNS) that enable communication out-
side of local subnets all rely on ARP.

For the purposes of our approach, we define a scan as
an ARP request. An ARP request indicates that a system is
trying to resolve an IP address to a MAC address for some
type of connection. However, it is possible for a host to
connect to a device without an immediately preceding ARP
request. Once a device performs an ARP request, the MAC-
to-IP address mapping within an ARP reply is maintained
locally in the device that receives it in a table called an ARP
cache. Only the device that made the ARP request receives
the ARP reply. The ARP cache entries also have an as-
sociated time to live (ttl) and are dynamically entered and
removed. If an ARP reply is received by a device and the
MAC address already appears within its cache, it is over-
written by the update. As long as the ARP reply remains
in the local cache, subsequent connections to the same de-
vice will result in the MAC address being obtained from the
cache rather than through an ARP request. The affect of
ARP caches on our approach is discussed in Section 3.1.2.
Our technique can be deployed on any device within the
broadcast domain, even in a switched network fabric, and
as it only processes ARP requests, it is extremely efficient.

4Topological scanning worms (e.g. Nimda) employ this strategy [19].

L2L scanning activity results in unusual ARP activity,
namely: (1) an infected device will use ARP to try to con-
nect to some devices within the internal network with which
it had no previous history of connecting to pre-infection; (2)
the number of ARP requests generated per fixed unit time
(e.g. every 60 seconds) will increase; and (3) in those net-
works where not all IP addresses within a netblock have
been allocated, ARP requests will be generated for nonex-
istent systems (i.e. for internal network dark space). We
now discuss in turn how we use these behaviors to derive an
aggregate anomaly score for each device within a cell.

3.1.1 Peer List (Customary ARP request targets)

Each time an ARP request is generated, any observed new
source protocol address is recorded as an index entry within
the peer list. The corresponding target protocol addresses
of the respective queries are added as entries indexed by
the corresponding source protocol address. Over a training
period, we build an index of active systems within the net-
work cell (i.e. ARP requestors) and the list of devices (ARP
chains) they are trying to connect with. The individual el-
ements within each ARP chain are derived from the set of
IP addresses queried by the ARP requestor. If an ARP re-
questor queries the same device more than once, this activ-
ity is ignored (i.e. no duplicate entries exist within an ARP
chain). Typically, individual devices will only communicate
with a small subset of other internal devices that offer some
sort of service (e.g. DNS, file, router, etc.).5

For each device � in a cell, we assign an anomaly score
for the peer list factor (���) as: ����� 	�
� where � is the
number of ARP requests as made by device � (in the current
sample interval) which are outside of device � ’s ARP chain.
In our testbed, the device identifier � corresponds to the last
octet in the device’s IP address. Subsequent distinct con-
nection attempts outside a device’s ARP chain within the
detection window (see Section 3.2) result in a linear growth
for this anomaly factor.

The running total of the � � factor for device � is the sum
of the � ��� 	 values over all sample intervals in the current
detection window. More specifically, let ���������� 	 denote the
anomaly score ����� 	 as defined above at sample interval � ;
then the running total for ����� 	 for the current detection win-
dow of width � is ����� 	�
������ � �!#" � ��� � ���� 	 .

3.1.2 ARP Activity (Number of ARP requests)

The number of ARP requests is recorded for each active de-
vice within the network over discrete sample intervals (e.g.
60 seconds) during the training period. Once the training
period is complete, the mean (�) and standard deviation
($) of the observed ARP request activity are calculated for
each individual device. We set a (somewhat arbitrary) upper

5This assumption is violated e.g. in P2P networks and highly dis-
tributed cooperative network environments (see Section 6).

bound and call it the expected maximum ARP request activ-
ity (%) for device � within a sample interval: % 	
 �'&)(*$.

A primary factor in choosing this value is that in a nor-
mal (i.e. Gaussian) distribution, 95% of the data values will
fall within two standard deviations of the mean value; how-
ever, it should be clear that other selections may be equally
or more useful. Once the training period has ended, the ob-
served (i.e. subsequently monitored) ARP request activity+ 	 for each device � , is compared to %,	 . + 	.-/%0	 may
indicate anomalous scanning activity.

We assign an anomaly score for the ARP activity factor
(�21) for device � as follows:

�21 � 	
43 + 	�5 % 	7698;:=<,> -@? >A 698;:=<,>CB ? > (1)

Similar to the ��� factor, this calculation is performed dur-
ing each sample interval to determine a running total within
the detection window (see Section 3.2) for each device. As
device � ’s ARP request activity (

+) increases beyond %D	 ,� 1 � 	 increases linearly. For instance, server 192.168.1.11
has �E
GFIH�JLKNM , $O
GFLH ALPIQ , and % �R�
 P H Q J�F . If

+ ���
SJ
then �21 � �R�
TFIH P*U M . This factor is particularly useful in
addressing the affect of local ARP caches and large ARP
chains (as discussed in Section 5.3.2).

3.1.3 Internal Network Dark Space

Internal network dark space is defined during the training
period. Looking at the peer list in its entirety, we derive
a set of internal system addresses that comprise the active
systems within the cell. ARP requests for IP addresses not
contained within this set we consider to be anomalous, and
refer to as internal network dark space.

We assign an anomaly score for the internal network
dark space factor (�WV) during a given sample interval as:

� VX� 	
 3 A 698;:ZY�[]\�^*_R`ba�c�^Ldfe0aRdX^*Ygah 698;:i\WeXj28kdfe08�aRdX^IY�aZ\�^I_�`ba9c�^Ldfe (2)

We suggest that the value h be assigned such that it is the
same for all devices (�) and a single observed connection
to an internal network dark space address should generate a
value � VX� 	 sufficient on its own to meet the alert threshold r
and generate an alarm (i.e. in our prototype, we set h
ml ;
see Section 3.2).

3.2 Setting Alert Thresholds

Our implementation requires that a scanning worm ex-
hibit a minimum sustained scanning threshold of one scan
per minute. Therefore, we define a sample interval as 60
seconds (i.e. n = 60 seconds). The choice of sample in-
terval directly affects the amount of state information that
must be maintained by the prototype. The detection win-
dow of width � (= number of sample intervals) is the period
of time in which observed anomaly scores for factors � � and

�o1 must be maintained in state. In our implementation, we
set ��
pl (see definition of l below).

For example, for lq
rF the detection window is 60 sec-
onds and an alert is generated upon a single anomalous scan
observed within a one minute period. If we set ls
T(,
the detection window is 120 seconds and two anomalous
scans must occur within two minutes to trigger an alarm.
Anomalous scans get aged out over time; scans which slide
out as the current detection window moves no longer con-
tribute to the anomaly score. Anomaly scores are attributed
to devices as ARP requests are processed by the prototype.
Therefore, alarms can be generated at any time regardless of
the size of the detection window or when they are observed
within a sample interval. For each sample interval and each
device, we derive the total anomaly score for device � as:�otg� 	�
������ 	g&u� 1 � 	v&)�2VX� 	 .

If the current sample interval is denoted as sample inter-
val � , and �g�����tg� 	 is the total anomaly score as defined above at
sample interval � , then the total anomaly score for a window
of width � ending at sample interval � is:

� 	
 ��� �w �!#" � ��� � �tg� 	 (3)

An alarm is generated when � 	�x l for any device � .
With respect to factor � � and �21 (or a combination thereof),
the configurable alert threshold (l) for � 	 is the minimum
number of anomalous scans that must be made by device �
within the detection window before an alarm is generated. l
can be manually set before the training period or automati-
cally determined by the detection system. Our prototype au-
tomatically sets l to the floor of the highest % 	 value it has
calculated over the training period. For instance (cf. Table
1), 192.168.1.11 has the highest %,	 score (3.651) thereforel�
 P .
4 High-Level System Design

Our software implementation uses the libpcap [3] library
and is comprised of two logical components: PPE and ACE.
The Packet Processing Engine (PPE) is responsible for ex-
tracting the relevant features from the live network activity
or saved network trace files (see Section 4.1). The ARP
Correlation Engine (ACE) includes a dynamically gener-
ated peer list and the list of IP addresses it considers to be
internal network dark space (see Section 4.2). The ACE
maintains in state all relevant ARP information extracted
by the PPE.

4.1 Packet Processing Engine (PPE)

The PPE is responsible for extracting all ARP request
packets from network capture files or live off the network.
Due to the transmission mechanism of ARP requests (i.e.
broadcast), the prototype can be deployed on any device
within the network cell. Other forms of ARP activity (e.g.

ARP replies) are ignored making this scheme stateless. Fea-
ture extraction from the ARP request packets includes 3-
tuple tokens (source IP address, target IP address, times-
tamp) which are passed to the ACE for processing.

4.2 ARP Correlation Engine (ACE)

The ACE processes all network features passed to it by
the PPE. The ACE is responsible for four major functions.
During the training period, the ACE: (1) creates individual-
device specific ARP request statistics, and (2) creates the
peer list. Once the training period is complete the ACE:
(3) uses ARP request activity to generate a three-factor
anomaly score, and (4) generates alarms when the alert
threshold has been met or exceeded.

Network ARP Statistic Extraction. During the training
period, the ACE maintains ARP request statistics for each
active device (�) within the network. ARP requests, encap-
sulated in tokens from the PPE, are processed in sampling
intervals of duration n . For our implementation, we chose a
value of n such that it matched the default ARP cache time
to live (ttl) of our devices (i.e. Linux operating systems). If
within a sampling interval there is no ARP request activity,
this observation is excluded from final mean and standard
deviation calculations (see Section 3.1.2). This is to com-
pensate for frequent periods of inactivity (e.g. nights and
weekends) that would skew the ARP request statistics giv-
ing them lower values than in peak usage times.

At the end of the training period, the mean and standard
deviation of ARP request activity is calculated for each de-
vice (see for example Table 1). These values comprise the
expected maximum (%D) ARP request activity for each in-
dividual device within the cell.

Peer List. The peer list, constructed during the training
period, contains a listing of all live devices and the IP ad-
dresses of the internal devices they were in communication
with. For any given device, connecting to a device within its
respective ARP chain should occur at a higher probability
than other devices within the peer list.

Anomaly Score and Generating Alerts. Once the train-
ing period is complete, an anomaly score for each individual
device within the network cell is maintained (see Section
3.1). An alert is generated when �y	 x l for any device � .
The timestamp from the triggering ARP request is used as
the timestamp for the alert, which also indicates the alert
triggering source and destination address.

5 Prototype and Analysis

In this section, we describe the network and data set
(network traffic) we used with our software prototype as
a proof-of-concept to validate our proposal and refine our
system design, and discuss how our prototype performed.
Four weeks of network traffic was collected in one of our
university research labs. The first two weeks of the network
data set was used as the training period. We then tested the

Table 1. ARP statistics for prototype system.
Mean and Standard Deviation for number of ARP re-
quests made per sample interval of 60 seconds during
the training period.

Servers
Address ARP � $ Max

Chain Requests
Size

192.168.1.11 21 1.579 1.036 8
192.168.1.12 17 1.203 0.610 9
192.168.1.13 16 1.176 0.428 4

Workstations
Address ARP � $ Max

Chain Requests
Size

192.168.1.16 10 1.243 0.467 4
192.168.1.20 9 1.214 0.467 5
192.168.1.24 8 1.171 0.423 4
192.168.1.26 11 1.068 0.261 3
192.168.1.27 8 1.197 0.470 4
192.168.1.30 5 1.724 0.674 5
192.168.1.31 4 1.522 0.639 3
192.168.1.33 6 1.235 0.449 3

prototype on the remaining two weeks of data, to determine
both the validity of our detection technique, and the affect
of the configured alert thresholds on false positive rates. We
tested two different approaches to setting alert thresholds:

1. Common threshold approach: give every device within
the network cell the same alert threshold l .

2. Function-specific threshold approach: partition the
network cell to give devices that perform differ-
ent functions (e.g. server, workstation) different alert
thresholds l � where � is the function used to partition
the network cell.

Finally, we will describe our scanning worm simulations
and report on the performance of our detection software in
detecting these scans.

5.1 Data Set for Prototype Evaluation

To validate our approach, we developed and tested a fully
functional software prototype with all features discussed in
Sections 4.1 and 4.2. The software was installed on a com-
modity PC running Linux with a 10/100 network interface
card. The lab network consisted of a one quarter Class C
network of Internet-reachable IPv4 addresses. Using the
cell definition from Section 3, the lab contained one cell.
Network traffic was collected from November 11 to Decem-
ber 11, 2004.

From the two week training period the prototype au-
tomatically determined each device’s peer list size, mean

Table 2. Alarm threshold analysis
Alerts

Threshold l Server Workstation Total
1 scan 37 62 99
2 scans 19 3 22
3 scans 5 0 5
4 scans 3 0 3
5 scans 2 0 2
6 scans 1 0 1

Anomalous Connection Activity
Server Workstation Total

Outside ARP chain 181 36 217
Dark space 0 0 0

number of ARP requests per minute, standard deviation of
ARP requests per minute, and the largest number of ARP re-
quests observed by each device (i.e. Max Requests) within
the 60 second sampling interval. The last characteristic is
not used in the determination of the anomaly score but as
an input to analyze the effectiveness of the approach as
discussed in Section 5.3.1. After the training period we
recorded, for analysis, ARP activity within the network cell
in a single pcap file for the next two weeks. During this
analysis period, we monitored the internal network indepen-
dently with an intrusion detection system (i.e. snort [16])
to ensure no known worm activity was included within the
data set. Finally, we simulated scanning worm propagation
within the test network using the Nmap [7] security scanner
to test our detection software.

The respective ARP request activity for a sample of ac-
tive system within the internal network is included in Ta-
ble 1. Network infrastructure devices (i.e. firewall and
switches) were excluded from analysis and thus do not ap-
pear as index entries within the peer list.

Approach 1: Common Threshold. Table 1 separates
servers and workstations in our testbed. Note that the
servers within the network have the largest ARP chains. The
device with the largest peer list (i.e. 192.168.1.11) was the
DNS/mail server for the network. This is not unexpected in
a typical client-server model. Likewise, the servers within
the network also had the largest observed ARP requests
within the sampling intervals.

By applying our technique on all the devices within the
network, we determined the number of false alarms gener-
ated as a function of our alert threshold. Applying a com-
mon alert threshold to all devices (common threshold ap-
proach), we ran the prototype on the second two weeks of
archived ARP request data, varying this threshold to ob-
serve the affect on false positive rates. Each trial run of
the prototype (i.e. processing a two week data file) took less
than one minute to complete. A subset of our results are
captured in Table 2.

Setting lz
rF resulted in 99 false positives over the two
week dataset. Recall that a scan to an IP address considered

to be internal network dark space was set to immediately
generate an alarm regardless of l by our suggested config-
uration of h
{l . As expected, we observed no scans from
internal devices to internal network dark spaces.

Setting the alert threshold at lE
|(causes an alarm to
be generated after observing two anomalous scans within
two time intervals (i.e. 2 minutes). With l}
~(, 22 false
positives resulted over the two-week period. For contrast,
for l]
 P (the value automatically selected by the prototype,
see Section 3.2), only 5 false positives resulted over the two-
week period. For use in an automated response system, the
occurrence of 5 false positives within a two-week period
may be too great. In our test network, as we increased l ,
the number of false positives decreased. If we manually setl)
 Q

only 1 false positive from all devices is generated
within a two-week period.

Approach 2: Function-Specific Thresholds. One
method to refine our approach is to use different alert thresh-
olds, for different categories of devices based on the system
function (not currently implemented by our prototype). For
instance, we observed that most servers have a higher ARP
chain counts than workstations. Additionally, two servers
have the two highest observed per minute ARP request
counts during the training period (servers 192.168.1.11 and
192.168.1.12, see Table 1). Not surprisingly, a server must
be able to handle bursts of requests from other network de-
vices. However, legitimate bursts in ARP request activity
may cause the �W1 factor to exceed its alert threshold causing
false positives. All 5 false positives generated at the l�
 P
threshold were caused by the two servers with the highest
per-minute ARP request count. We refer to distinguishing
of devices within the network cell to allow differing alert
thresholds based on the function of a device (e.g. server or
workstation) as the function-specific thresholds approach.
We could allow the workstations alarm threshold to be set
at lE
 P

reducing their false positive rate to zero (i.e. for
our test network). Increasing the server alarm threshold tol�
�J reduced not only their false positive rate but the over-
all false positive rate for the two-week period to 2.

Varying alarm thresholds could be extended to other
classes of systems within the network cell if required, de-
pending on the nature of applications running on the net-
work. However, as l increases so does the number of worm
scans before an alarm is generated.

5.2 Simulating Scanning Worm Activity

To simulate scanning worm propagation within a net-
work cell we used the port scan option of the Nmap se-
curity scanner. Just like a worm, the kernel and network-
ing components of the workstation performing Nmap scans
use ARP in order to make contact with the devices within
the network cell. We configured Nmap to scan a single
port (port 80) on all the devices within the network cell.
Ignoring the two broadcast addresses left 62 usable IP ad-
dresses. These port scans simulated a scanning worm trying

to find versions of vulnerable HTTP servers within the net-
work cell. The device we used to scan the network cell
was a workstation that had the highest ARP chain count
(192.168.1.26 had 11 ARP chain entries; see Table 1). We
set our alert threshold to l�
 P

. This was the minimum
threshold that incurred no false positives from workstations
during testing and it was also the value automatically se-
lected by our prototype. To fully exercise our detection soft-
ware, Nmap was run in two modes, each with two types of
scanning strategies as follows.

The first two tests consisted of scanning port 80 on ev-
ery device within the network cell using Nmap’s normal
mode (i.e. no time delays between scans) employing both
the sequential and random scanning strategies. The last two
tests consisted of scanning port 80 on every system within
the network cell using sneaky mode (waiting 15 seconds be-
tween scans for stealth) employing both the sequential and
random scanning strategies.

Table 3. Network ARP statistics
Number of Scans Before Detection

Normal Sneaky
Sequential 2 2
Random 1 3

5.2.1 Worm Simulation Results

Nmap Sequential Scanning Strategy. The sequential
scans for both normal and sneaky mode were detected
within two port scans (see Table 3). Nmap was config-
ured to sequentially scan the host range from 192.168.1.1
to 192.168.1.62 (omitting network broadcast addresses).
192.168.1.2 was the target of the second scan in both se-
quential scans. IP address 192.168.1.2 was assigned to a
network switch and does not appear within the peer list and
therefore is considered internal network dark space. In these
cases, sequential scanning detection was triggered by the� Vf� 1R� factor within the aggregate anomaly score.

Nmap Random Scanning Strategy. In normal mode,
the random scan was detected within one scan. Of the 62
usable addresses within the network, the total peer list size
was only 21 (i.e. approximately 66% of our network was de-
fined during the training period to be internal network dark
space). The first random scan in normal mode was to an in-
ternal network dark space. Again, the � V factor dominated
the aggregate anomaly score and caused an alarm to be gen-
erated after the first scan.

In sneaky mode, the random scan was detected within
three scans. In this case, although statistically improbable,
no internal dark space addresses were scanned. The � 1 � 1��
factor became the dominant factor and triggered after de-
tecting three ARP requests above %,	 for the device within
a three minute period. However, it is statistically probable
that subsequent tests using the same parameters would be
detected by the � V factor before three scans.

5.2.2 The Affect of Dark Space on Sequential and Ran-
dom Scanning Detection

Overall, our detection testbed implementation benefited
from the sparse internal IP addressing scheme within the
network cell. Internal network dark space comprised ap-
proximately 66% of the network cell’s usable IP addresses.
If � is the probability that a random scan will be to inter-
nal network dark space then F 5 � is the probability that
a random scan will not be to internal network dark space
(e.g. 0.3387). Random scans are independent events. The
probability that the �WVX� 	 factor will trigger causing an alarm
after the occurrence of three random scans is F 5�� F 5 �����D
F 5 H PIPL� K V
 A H M Q FLF .

The large amount of internal network dark space also
aided our prototype in detecting sequential scanning. Topo-
logical worms typically harvest network configuration in-
formation from their victims for new targets [19]. In our
testbed, any sequential scanning strategy that started from
the lowest IP value within a device’s network subnet con-
figuration value (i.e. 192.168.1.1) would be detected within
the second scan (see Section 5.2.1).

5.3 Discussion of False Positives and Negatives

The following two sections discuss the impact and
causes of false positives and negatives on our detection tech-
nique. Since the analysis is valid for both the common
threshold and function specific thresholds approaches, we
discuss only the specific results of the approach with the
greatest number of false positives (i.e. common threshold
approach).

5.3.1 False Positives

All five false positives which arose when the alert threshold
was set to l]
 P (triggering at l or more scans) were caused
by servers, and specifically by bursts in server activity. A
typical scenario for normal network activity involves users
logging onto their workstations and requesting network ser-
vices (e.g. DNS, mail, etc.) that allow them to execute de-
sired tasks. As a workstation generates an ARP request to
determine the MAC address of the server, the server also
typically generates ARP requests to determine the MAC ad-
dress of other servers that assist them in performing their
tasks. When a number of users access services simulta-
neously, this will cause a burst in ARP requests from the
servers. The two most active servers (i.e. 192.168.1.11 and
192.168.1.12) in our testbed have the highest observed max-
imum ARP requests in the sampling interval. ARP request
bursts caused by servers answering legitimate service re-
quests can produce false positives. The occurrence of false
positives could be reduced by raising l . However, each in-
crement of l allows another scanning worm infection at-
tempt to occur before an alarm is raised.

Automated attack and scanning tools share the same
searching strategies as scanning worms. These tools can

perform random or sequential scanning at differing speeds
to either exploit or identify vulnerable systems. Our ARP-
based detection technique discovers intra-cell scans caused
by such tools (e.g. if the minimum sustained scanning rate
exceeds one scan per minute), but does not distinguish them
from scans resulting from a scanning worm.

5.3.2 False Negatives

A false negative occurs when malicious activity occurs
without triggering an alarm. In this section, we discuss the
affect of ARP caches and large ARP chains on possible false
negatives for our detection technique.

ARP Cache. If a device happens to have the MAC ad-
dress of the device it wants to communicate with within
its local cache, no ARP request is generated. For this rea-
son, typical scanning worms exploit an infected device’s lo-
cal ARP cache just as any legitimate network application
would. However, our prototype is network-based and does
not have access to the ARP caches of the devices within the
network cell. For this reason, with respect to the � 1 � 	 factor,
this activity is not reflected within the

+ 	 activity count.
However, our calculation of % 	 (see Section 3.1.2) does

offer some insight on the affect of ARP caches. For ex-
ample, system 192.168.1.30 (statistically the most active
workstation in Table 2) has �4
�FIH�K*(U and $G
 A H Q K U ,
making %DV "
 P H A K*(. This represents the maximum ex-
pected number of ARP requests a device can make within
a one minute period without causing a positive � ��� V " score.
Recall (see Section 4.2) that the default ttl for the entries
within the ARP caches of the devices in our network cell is
60 seconds, which matches our �W1 � 	 sampling interval. ARP
replies (i.e. MAC and IP address pairs) are cached locally
on the devices that generated the associated ARP requests.

According to % 	 , we expect that three is a reasonable
upper bound for the number of entries within this device’s
ARP cache. If a scanning worm happened to select any of
the IP addresses within the cache, no network ARP request
would be sent and our prototype would not detect the scan
(i.e.

+ 	 would not be incremented by 1). ARP caches can
be a source of false negatives. However, in our calculations
of � and $ for each device, we ignored the affect of long
periods of inactivity. This was done to better approximate
the ARP request activity during active usage (i.e. ignoring
user and system inactivity) to ensure that our false positive
rates would be minimized for this factor. %,	 represents a
reasonable upper bound to the number of entries within the
respective local ARP caches. In practice, the ARP caches
will typically contain fewer entries than the % 	 values for
each system since by design, % 	 exceeds the corresponding
mean value. Therefore, we expect that ARP caches have a
minimal affect on factor �W1 � 	 .

Additionally, the � 1 � 	 factor is not applied in isolation.
In order to avoid any anomaly score contribution from the
remaining two anomaly score factors (i.e. � ��� 	 and � Vf�) all
these scans would have to be limited to the device’s ARP

Table 4. Anomaly factor triggering probabili-
ties in testbed

System Specific ARP Request Statistics
ARP Chain � $

Size
192.168.1.11 21 1.579 1.036
192.168.1.26 11 1.068 0.261

Scan Location Probability
ARP Dark Peer
Chain Space List

192.168.1.11 0.3387 0.6613 0
192.168.1.26 0.1774 0.6613 0.1613

chain (see discussion in next section).
Large ARP Chain. We use ARP chains to characterize

normal network interactions. A system with a large ARP
chain will be able to connect to the devices within the chain
without contributing to the ����� 	 factor. The largest ARP
chain in our testbed belonged to the server 192.168.1.11
with 21 entries. The largest workstation ARP chain be-
longs to 192.168.1.26 with 11 entries. Table 4 shows the
probabilities of the two systems scanning within their re-
spective ARP chains, internal network dark space, and their
peer lists.

As discussed in Section 5.2.2, internal network dark
space dominates the overall scanning possibilities for
worms within our testbed network cell. Even the de-
vice with the largest ARP chain (192.168.1.11) had only a
0.3387 probability of selecting an IP address within its ARP
chain. During a random scan, the chance of 3 successive
scans all targeting IP addresses in the ARP chain is approx-
imately � F 5 �v� V
 A H PIPI� K V
 A H ALPI�L� J (see Section 5.3.2).
If a sequential scanning strategy was used, the probability
that 3 successive scans would all be to devices within an
ARP chain would depend on the IP address composition of
the ARP chain. Using our network as a practical example,
a sequential scan from 192.168.1.11 would deviate from its
ARP chain on the second scan and be detected by � ��� �R� and� VX� �R� . Regardless, if a scanning worm managed to only scan
IP addresses within the device’s ARP chain, it would have
to do so with a sustained scanning rate of less than 1 scan
per minute or it would be detected by � 1 � �R� . Therefore, the
application of � 1 ensures large ARP chains have a minimal
affect on the detection technique.

6 Limitations

Limitations. Our approach relies solely on the observa-
tion of ARP requests. We do not try to match the associated
ARP replies to determine if the subject of the ARP requests
are actually active on the network. In the event that a sys-
tem broadcasts an ARP request to a device currently not
active on the network (e.g. disconnected from the network)

due to scheduled maintenance or some unscheduled failure,
this will not be considered a scan to internal network dark
space as long as its address was observed during the train-
ing period. In this scenario, the amount of internal network
dark space would be understated as inactive devices would
be considered live. If we extended our approach to correlate
ARP requests and replies we could determine which devices
are live or actually internal network dark space.

ARP correlation would also address another potential
limitation that arises in networks that use the Dynamic Host
Configuration Protocol (DHCP) [5]. DHCP allows network
devices to determine their IP addresses from a central server
rather than from a static configuration file. When a device
becomes active on the network, it contacts its DHCP server
to retrieve an IP address that it can use on the network. The
MAC address of the requesting device is then associated
with an IP address assigned by the DHCP server. DHCP-
assigned IP addresses are leased to the devices that request
them. A DHCP lease is the amount of time that the DHCP
server grants permission for a device to use a particular IP
address. The devices in our test network used static IP ad-
dresses and thus the MAC and IP pairing was constant. In
a DHCP-enabled network, the MAC address and IP pairing
is not guaranteed to be constant (e.g. when the lease expires
a device may receive a different IP address and thus the IP
address MAC pairing is different). Our prototype uses IP
addresses to identify devices and thus would be adversely
affected by allowing a device to have different IP addresses.
ARP request and reply correlation would enable us to use
the MAC addresses (which are fixed and never change) of
devices for identification which DHCP has no affect on.

Another limitation is that network dark space addresses
are determined by observing ARP requests on the network
and building a peer list (see Section 3.1.1). Once the train-
ing period is completed, in our description thus far there is
no mechanism to add to the peer list or determine if previ-
ously active devices have been taken off the network. This
may provide an inaccurate accounting of internal network
dark space. To address this limitation, we could dynami-
cally correlate ARP requests and replies to determine the
emergence of new devices. Currently, if we observe an ARP
request to an IP address outside the peer list an alarm is gen-
erated.

In a P2P or distributed computing environment, network
devices may interact with a large number of other devices.
The ARP chains for the devices could be quite large and
homogeneous. In this scenario, the � � factor would be af-
fected as a device could interact with a large percentage of
the network cell and still remain within its ARP chain. Fur-
thermore, if the device was involved in performing tasks
that required frequent interaction with multiple devices over
long periods of time its � and $ would be large. This would
require our prototype to observe a greater number of worm
scans before the � 1 factor would trigger. In such instances,
our technique could be integrated as a secondary input to a
more sophisticated suite of anomaly detectors.

Attempted Circumvention. A possible worm infection
strategy would be to only perform infection attempts after
the device had initiated a connection through legitimate use.
In this scenario, a scanning attempt could be initiated when
the IP address is in the local cache thus obviating the need
for an ARP request. A slight modification to this strategy
would be for the worm to install itself on a host and mon-
itor ARP request activity before propagation. Worm prop-
agation could then be restricted to those devices that were
the subject of ARP requests. In these scenarios, the � � and� V factors would not be affected by this activity. However,
once propagation begins the worm’s sustained scanning rate
would still trigger an alert by �W1 unless the scanning rate
was less than 1 scan per minute.

7 Concluding Remarks

The main objectives of this paper have been to describe
an ARP-based anomaly detection approach designed to be
deployed in a single cell, and confirm that the general idea
works. We tested the approach in a small lab environment
(nonetheless with a reasonable amount of normal network
traffic) and provided evidence of the viability of this ap-
proach. The minimum sustained scanning rate constraint of
one scan per minute was a limitation of our prototype and
not the overall approach. The same approach could be used
to detect worms that scan less frequently than this threshold
at the expense of more memory and poorer results in terms
of accuracy and false positives.

Our detection system is anomaly-based and therefore has
the ability to detect emerging worms. The prototype au-
tomatically calculates the required individual device statis-
tics and can determine an appropriate network-specific alert
threshold (l). We have developed a full implementation of
our ARP-based approach in a software prototype that runs
on commodity hardware.

Acknowledgements

We thank John Ioannidis, Carleton University’s Digi-
tal Security Group, and the anonymous reviewers for com-
ments which significantly improved this paper. The second
author is the Canada Research Chair in Network and Soft-
ware Security, and is supported in part by an NSERC Dis-
covery Grant, the Canada Research Chairs Program, and
MITACS. The third author is supported in part by NSERC
(Natural Sciences and Engineering Research Council of
Canada) and MITACS (Mathematics of Information Tech-
nology and Complex Systems) grants.

References

[1] Forescout. Wormscout. http://www.forescout.com/ worm-
scout.html.

[2] Mirage Networks. http://www.miragenetworks.com.
[3] tcpdump/libpcap repository. http://www.tcpdump.org.

[4] Silicon Defense. Worm containment in the internal network.
Technical report, 2003.

[5] R. Droms. Dynamic Host Resolution Protocol. RFC, March
1997. http://www.ietf.org/rfc/rfc2131.txt? number=2131;
accessed on January 24, 2005.

[6] D. Ellis, J. Aiken, K. Attwood, and S. Tenaglia. A behav-
ioral approach to worm detection. In Proceedings of The
Workshop on Rapid Malcode, 2003.

[7] Fyodor. Remote OS detection via TCP/IP stack fingerprint-
ing. Phrack, 54, December 1998.

[8] G. Ganger, G. Economou, and S. Bielski. Self-securing net-
work interfaces: What, why and how. Technical report,
Carnegie Mellon University, CMU-CS-02-144, May 2002.

[9] A. Gupta and R. Sekar. An approach for detecting self-
propagating email using anomaly detection. In Proceedings
of the Sixth International Symposium on Recent Advances in
Intrusion Detection, September 2003.

[10] J. Jung, V. Paxson, A. Berger, and H. Balakrishman. Fast
portscan detection using sequential hypothesis testing. In
IEEE Symposium on Security and Privacy, 2004.

[11] S. Manwani. ARP cache poisoning prevention and detec-
tion. Technical report, Faculty of Computer Science, San
Jose State University, December 2003.

[12] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the Slammer Worm. In IEEE Security
and Privacy Magazine, pages 33–39, July/August 2003.

[13] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet
quarantine: Requirements for containing self-propagating
code. In Proc. of the 2003 IEEE Infocom Conference, San
Francisco, CA, April 2003.

[14] D. Moore, C. Shannon, G. Voelker, and S. Savage. Network
Telescopes. Technical report, CAIDA, April 2004.

[15] D. Plummer. An Ethernet Address Resolution Protocol.
RFC, November 1982. http://www.ietf.org/rfc/rfc0826.txt?
number=826; accessed on January 24, 2005.

[16] M. Roesch. Snort - lightweight intrusion detection for net-
works. In LISA, 1999.

[17] S. Schechter, J. Jung, and A. W. Berger. Fast Detection of
Scanning Worm Infections. In Proceedings of the Seventh
International Symposium on Recent Advances in Intrusion
Detection, French Riviera, France, September 2004.

[18] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated
worm fingerprinting. In ACM/USENIX Symposium on Op-
erating System Design and Implementation, Dec. 2004.

[19] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A
taxonomy of computer worms. In The First ACM Workshop
on Rapid Malcode, Oct. 2003.

[20] N. Weaver, S. Staniford, and V. Paxson. Very fast con-
tainment of scanning worms. In Proceedings of the 13th
USENIX Security Symposium, 2004.

[21] D. Whyte, E. Kranakis, and P. C. van Oorschot. DNS-based
detection of scanning worms in an enterprise network. In
Proc. of the 12th Annual Network and Distributed System
Security Symposium, Feb. 2005.

[22] M. Williamson. Throttling viruses: Restricting propagation
to defeat malicious mobile code. In Annual Computer Secu-
rity Applications Conference, 2002.

[23] C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and
early warning for Internet worms. In Proceedings of the 10th
ACM CCS, 2003.

