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Abstract— The 1999 DARPA/Lincoln Laboratory IDS Eval-
uation Data has been widely used in the intrusion detection
and networking community, even though it is known to have a
number of artifacts. Here we show that many of these artifacts,
including the lack of damaged or unusual background packets
and uniform host distribution, can be easily extracted using
NetADHICT, a tool we developed for understanding networks.
In addition, using NetADHICT we were able to identify extreme
temporal variation in the data, a characteristic that was not
identified in past analyses. These results illustrate the utility of
NetADHICT in characterizing network traces for experimental
purposes.

I. INTRODUCTION

In 1999 DARPA commissioned Lincoln Laboratory to cre-
ate a synthetic benchmark for evaluating intrusion detection
systems [6]. These IDEVAL data sets have become notorious
in the intrusion detection community: they have been both
widely used and widely criticized. This criticism is due to
the fact that an accurate performance with this data set can
have little bearing on how an IDS system will perform in
“real” environments; however, they remain in use because,
to this day, they are some of the only publicly-available data
sets for IDS evaluation.

One key criticism of the IDEVAL data sets is that their
simulated normal network traffic is unrealistic. While their
creators went to considerable effort to simulate a realistic
network environment [7], there are some clear deviations
from the network traffic patterns one would expect in a real
network. For example, critics have noted that the underlying
network topology is unusually flat and the traffic is unusually
uniform (low in “crud”), leading to artificially low false
positive rates in evaluated systems [10], [9]. Such deviations,
however, have largely been revealed only after extensive
manual analysis guided by expert knowledge.

For the past few years we have been developing
NetADHICT [5], a tool for understanding the structure
of network traffic. NetADHICT allows network operators
to visualize ongoing traffic patterns while using minimal
knowledge of standard network protocols. We now have
significant experience in analyzing production networks with
NetADHICT [2], [3]. In this paper we study whether
NetADHICT is able to detect the unusual patterns in the
1999 DARPA IDS Evaluation (IDEVAL) data sets.
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We have found that these data sets look very different
from ones captured from production networks. Many of
the characteristics observed by other researchers through
painstaking analysis are easy to observe with NetADHICT;
in addition, other, even larger-scale artifacts become more
obvious with the use of NetADHICT’s visualizations. Instead
of making use of flow- or bandwidth-based network tools,
researchers might select NetADHICT for a high-level view
of current usage of a given network—including unpopular or
non-standard protocols, such as peer-to-peer services. These
results indicate that NetADHICT can be a valuable tool for
evaluating network captures for experimental purposes.

The remainder of the paper is structured as follows:
Section II describes the IDEVAL and the history of its
analysis. Section III provides an introduction to NetADHICT,
including a brief description of its operation of the internal
algorithm. Description of our testing methodology and orga-
nization is contained in Section IV. Our analysis is presented
in Section V presents our analysis of the IDEVAL data sets;
Section VI discusses what we found. We conclude with final
remarks on this research in Section VII.

II. PAST ANALYSES OF DARPA/LINCOLN LABS DATA

In 1998, and again in 1999, the Lincoln Laboratory at
MIT, under contract from DARPA, developed a series of
data sets in order to test the correctness and robustness of
existing Intrusion Detection Systems (IDS) [7]. These data
sets were created by using host computers connected together
with a traffic generator to model a small US Air Force base
of limited personnel, connected to the Internet. Network
traffic and host audit information was recorded during the
experiments. Three weeks of training data and two weeks
of test data were released, as well as a list of all attacks
included in these synthetic data sets. Our work examines the
network captures from the the 1999 experiments.

Haines et al. [1] describe the DARPA/MIT Lincoln Lab
evaluation (IDEVAL) data set as a fictitious Air Force
base with hundreds of users across thousands of machines.
Programmers, secretaries, managers and other users were
simulated by user automata. These automata “send and
receive mail, browse websites, send and receive files using
FTP, use telnet to log into remote computers and perform
work, send and receive IRC messages, monitor the router
remotely using SNMP, and perform other tasks” [1, p. 18]
in order to simulate background traffic for the embedded
attacks in the data sets. These virtual machines included a
heterogeneous mix of Linux, SunOS, Solaris and Windows
NT machines, connected by a Cisco router. Attacks are
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initiated from both inside and outside of the local network.
Network traffic is captured on either side of the router using
tcpdump.

The IDEVAL data sets have been primarily used to eval-
uate intrusion detection or other network security systems.
These data sets are useful because they are entirely synthetic,
containing no proprietary nor confidential information for
any real users. The IDEVAL data sets have been used in
a number of well-cited papers [8], [11], [12], [13]; however,
they have also been used in contexts that were not ideal.

Of particular note is the 1999 The Third International
Knowledge Discovery and Data Mining Tools Competition
(KDD Cup 1999). They chose the 1998 DARPA/Lincoln
Labs data sets as their target data set [4]. This competition
brought the work of Lincoln Labs to the attention of the
machine learning community, leading to a huge number of
papers applying various algorithms to them. Unfortunately,
as noted by McHugh [10], these data sets have a number of
artifacts that make them unsuitable for evaluating learning-
based approaches to intrusion detection. Specifically, the
normal traffic is too uniform: the machines behave in a too
similar manner, and there is a distinct lack of malformed
background traffic, or “crud.” Mahoney et al. [9] also re-
ported several other inconsistencies with real traffic captures,
notably regularities regarding TCP SYN packets and severe
predictability in source addresses and packet header fields
such as the time to live (TTL). Because of these features,
attacks in the IDEVAL data sets are much easier to detect
than in regular network traffic.

While it is possible to mitigate some of this uniformity
by mixing in traffic captured from production networks [9],
the underlying problem was that the artifacts of this data set
were only apparent to experts in the field, and then only after
a significant amount of manual work. What is needed, then,
are tools that could reveal such patterns, but in a way that
is much clearer and that requires much less domain-specific
knowledge. As we explain below, we believe NetADHICT
is one such tool.

III. NETADHICT
NetADHICT is a tool for understanding the structure of

network traffic. It allows users to visualize traffic as a series
of clustering decision trees, typically with one tree for every
ten minutes of observed traffic. These trees classify packets
depending upon whether they contain a series of (p, n)-
grams: fixed-length strings at fixed offsets within a packet.
An example tree is shown in Figure 1. A packet is first tested
against the (p, n)-gram tree in the root node. If it is present
in the packet, clustering proceeds to the left; if not, the right
branch is followed. The packet is clustered when it reaches
a leaf node.

All leaf nodes (known as clusters) are examined by a port-
based packet classifier. Each wedge of a cluster represents
one class of traffic contained within the node. Wedges are
proportional to one another inside of a cluster; cluster size
represents a logarithmic measure of packet counts. N6, the
left-most cluster in our example, only contains DNS traffic.

File /home/acowpert/NetAdhict/IEEEPaper/data/LinconLabs/ll-1999-week3-monday-inside.tcpdump
 Time 44
Queues 4

Last 10 Minutes 36869
Last 180 Minutes 753811

Total Packets 1403873

N2
31, 0x10 0x70

36869 (100.00%)
753811 (100.00%)

N5
107, 0x6c 0x00
13652 (37.03%)
88992 (11.81%)

N8
34, 0x00 0x50

23217 (62.97%)
158099 (20.97%)

N6
6000 (16.27%)
38889 (5.16%)

1

N7
7652 (20.75%)
50103 (6.65%)

13

N9
3885 (10.54%)
30307 (4.02%)

2

N10
19332 (52.43%)
127792 (16.95%)

19

Fig. 1. Example tree created by NetADHICT. The internal nodes are
labelled with a node identifier, a 2-byte (p, n)-gram (offset plus two bytes
in hexadecimal), and all nodes contain frequency counts for a short and
long-term windows (10 minutes and 3 hours). These counts are used to
determine when nodes are to be split or deleted. Last, all leaves store a
count of all protocols they contain.

We refer to such clusters as being singular. The right-most
cluster, N10, contains 19 types of traffic. Note that these
packets did not match any of the (p, n)-grams in the tree.
We call this cluster the global default cluster.

NetADHICT incrementally learns a set of (p, n)-grams
describing network traffic based on the relative frequency
of packets. Specifically, if too many packets are clustered
in a specific node, it is split by adding a new (p, n)-gram
decision node. The (p, n)-gram is chosen such that it matches
approximately half of the packets being clustered in the leaf
node. Similarly, when too little traffic has been clustered to
a given leaf over a sufficient period of time, it and its sibling
are deleted; its parent then becomes a new leaf node. The full
details of this algorithm, known as approximate hierarchical
divisive clustering (ADHIC), is described by Hijazi et al. [2].

There are two things to note about NetADHICT. One
is that even though its trees are created without reference
to standard classifications of network traffic, their structure
generally corresponds to standard classifications: IP versus
non-IP traffic, TCP versus UDP, HTTP versus SMTP. An-
other is that NetADHICT makes use of the fact that real
network traffic has a (p, n)-gram frequency distribution that
is remarkably consistent over time. We discuss these patterns
further in Section V.

IV. TEST METHOD

To test NetADHICT’s performance on IDEVAL, we used
three weeks of the training data captured from the sniffer on
the inside of the network. Each week is comprised of data
for Monday through Friday from approximately 8am to 6am
the following day. Some created traces were cut short due to
system crashes during the data capture [6].



We performed two rounds of testing with NetADHICT.
The first involved running the NetADHICT backend on each
of the ≤ 22 hour traces. Each trace was run from a single file
(rather than the multiple files used in [2]). NetADHICT was
run with its standard parameters: 10 minute ticks and an 18
tick maturation period (180 minutes). A tick is the interval
at which the tree is evaluated for merges and splits. A node
may not split or be pruned from the tree until its maturation
period had expired. This resulted in trees with a maximum
depth of 5 or 6, and 18 to 26 terminal clusters.

For the second test, we merged the data sets together to
form three week-long traces. The timestamps in the traces
were shifted to remove the two hour empty period between
each trace (from approximately 6am to 8am) and then merged
into a single large trace file. NetADHICT was again run with
standard parameters. This second run provided a longer term
view of the evolution of the tree, providing more time for
the tree’s structure to stabilize. The trees for the week long
traces were much larger: they had a maximum depth of 10
or 11 and contained 60 to 75 terminal clusters.

Many of the results are compared to a previous capture
of normal traffic taken at our lab. This previous capture has
been published and thoroughly described in [2]. The behavior
of our lab network appears to be representative, based upon
our observations of a university network and that of a small
company [3].

V. ANALYSIS

We divide our analysis of IDEVAL into four parts. First,
we examine the temporal distribution of traffic as shown
by the evolution of NetADHICT’s trees (Section V-A). We
then examine artifacts in the frequency distribution of (p, n)-
grams in Section V-B. We examine the surprising lack
of unclassified traffic in IDEVAL in SectionV-C. We then
explore the significance of how traffic is classified, or how
easy is it for NetADHICT to characterize the IDEVAL traffic,
in Section V-D.

It is important to note here that our analysis of the
IDEVAL data set is primarily concerned with the qual-
ity of the network captures, not potential attacks or other
anomalies. The objective is to show, through the use of
NetADHICT, that this data set lacks particular qualities that
are found in real network captures, and contains artifacts of
an artificial nature.

A. Temporal Distribution of Traffic

While network traffic is very heterogeneous, there are
many consistent structural patterns in network traffic: the
same hosts communicate using the same protocols, sending
back and forth the same kinds of information, again and
again. NetADHICT works because it can extract much of
this structural similarity. The IDEVAL datasets, however,
appears to be missing some of this consistency. We make this
observation because we see a “strobe”-like effect in regards
to the trees NetADHICT creates. Consider Figures 2(a) and
2(b), which show a two consecutive “snapshots” of the
NetADHICT tree from the second week of the IDEVAL

Protocol IDEVAL week 2 CCSL
IPv4 7199540 6132185

TCP 6524425 3801738
TCP Unknown 3317 43678
MS WBT/MS RDP 0 9811
IPP 0 486936
IMAPS 0 166291
HTTPS 0 123979
SSH 344044 238124
MS Streaming/RTSP 0 97813
MSNMS 0 3767
XMPP 0 1221
TCP Sophos 0 5879
TCP No Payload 3071845 1888325
RTSP 0 2319
NBSS 2474 105
IRC 3119 0
TELNET 1930763 0
FTP 107781 5276
SMTP 250670 25923
CVS 0 11644
POP 2367 4881
HTTP 808037 684335

UDP 651324 2047182
UDP Unknown 4468 660
DNS 527710 66911
CUPS 0 128278
WHO 0 6650
RTP 0 248642
NBDGM 1427 62493
DCE RPC 790 15873
NBNS 12512 176379
RIPv1 39534 41538
HSRP 0 1293451
DHCP 0 1161
NTP 60804 5081

ICMP 23791 24475
EIGRP 0 258756

ARP 30715 869547
ETHER (old) 6419 74107

Total no. of Packets 7275137 7075868
Total Size in MB 1,539 1,819

TABLE I
PROTOCOL CLASSIFICATION AND CONTENT STATISTICS FOR THE

SECOND WEEK OF THE IDEVAL DATA SET AND OUR LAB (CCSL)
NETWORK TRACE. ONLY PROTOCOLS WITH PERCENTAGE ≥ 0.01% ARE

SHOWN (BEST VIEWED IN COLOR).

data set, ten minutes (one tick) apart. NetADHICT does
not commonly show completely different looking trees this
close in time. Many clusters are created from a particular
burst of traffic, then left empty when the burst ceases. New
bursts cause new nodes to be created, but they later quickly
disappear. Such large changes in tree structure over a short
period of time is something we never see in regular network
traffic. Some clusters may grow or shrink; overall, however,
the structure of the trees remain consistent.

We further characterize the bursty nature of the IDEVAL
data sets in Figure 3. Here we have compared them to cap-
tures of our lab’s network. The Carleton Computer Security
Lab (CCSL) network is comprised of a half-dozen servers,
and more than a dozen desktop machines, composed of Linux
and Macintosh operating systems. We note that our traffic
capture also contains attacks, just as the second week of
the IDEVAL data set contains labelled attacks. Though our
network is significantly smaller than the IDEVAL virtual
machines, its network topology is similar, and it generates
traffic at a similar scale.



File /home/acowpert/NetAdhict/IEEEPaper/data/LinconLabs/concatenated/ll-2.tcpdump
 Time 240
Queues 50

Last 10 Minutes 2843
Last 180 Minutes 37522
Total Packets 3336862

N2
31, 0x10 0x70
2843 (100.00%)
37522 (100.00%)

N5
14, 0x45 0x10
886 (31.16%)
4184 (11.15%)

N8
7, 0xc0 0x4f

1957 (68.84%)
33338 (88.85%)

N119
10, 0x46 0x33
0 (0.00%)

263 (0.70%)

N32
1, 0x10 0x5a
886 (31.16%)
3921 (10.45%)

N17
14, 0x45 0x10
1219 (42.88%)
14721 (39.23%)

N44
0, 0x00 0x00
738 (25.96%)

18617 (49.62%)

N245
16, 0x00 0x29
0 (0.00%)

262 (0.70%)

N160
0 (0.00%)
1 (0.00%)

0

N68
19, 0x0b 0x00
68 (2.39%)
975 (2.60%)

N74
16, 0x00 0x3f
818 (28.77%)
2946 (7.85%)

N290
26, 0xc5 0xda
0 (0.00%)
17 (0.05%)

N293
26, 0xc5 0xda
0 (0.00%)
31 (0.08%)

N291
0 (0.00%)
17 (0.05%)

0

N292
0 (0.00%)
0 (0.00%)

0

N294
0 (0.00%)
31 (0.08%)

0

N295
0 (0.00%)
0 (0.00%)

0

N69
15 (0.53%)
40 (0.11%)

1

N107
169, 0x04 0xac
53 (1.86%)
935 (2.49%)

N75
0 (0.00%)
383 (1.02%)

0

N92
73, 0x61 0x64
818 (28.77%)
2563 (6.83%)

N108
1 (0.04%)
12 (0.03%)

1

N284
48, 0x10 0x00
52 (1.83%)
923 (2.46%)

N285
38 (1.34%)
437 (1.16%)

2

N286
14 (0.49%)
486 (1.30%)

2

N93
455 (16.00%)
481 (1.28%)

1

N257
16, 0x00 0x4c
363 (12.77%)
2082 (5.55%)

N299
45, 0xf0 0x00
67 (2.36%)
805 (2.15%)

N259
296 (10.41%)
875 (2.33%)

2

N300
28 (0.98%)
339 (0.90%)

1

N301
39 (1.37%)
466 (1.24%)

1

N179
54, 0x00 0x00
0 (0.00%)

1552 (4.14%)

N38
55, 0x00 0x00
1219 (42.88%)
13169 (35.10%)

N137
28, 0xda 0x6c
15 (0.53%)
244 (0.65%)

N62
51, 0x00 0x00
723 (25.43%)

18373 (48.97%)

N221
27, 0x10 0x71
0 (0.00%)

782 (2.08%)

N281
37, 0x17 0x8a
0 (0.00%)
770 (2.05%)

N53
39, 0x20 0x85
323 (11.36%)
8213 (21.89%)

N56
29, 0x10 0x70
896 (31.52%)
4956 (13.21%)

N222
0 (0.00%)

782 (2.08%)
0

N223
0 (0.00%)
0 (0.00%)

0

N282
0 (0.00%)

770 (2.05%)
0

N323
43, 0x3e 0xaa
0 (0.00%)
0 (0.00%)

N324
0 (0.00%)
0 (0.00%)

0

N325
0 (0.00%)
0 (0.00%)

0

N54
20 (0.70%)
361 (0.96%)

1

N83
49, 0x00 0xac
303 (10.66%)
7852 (20.93%)

N57
9 (0.32%)

147 (0.39%)
1

N116
43, 0x00 0x00
887 (31.20%)
4809 (12.82%)

N84
20 (0.70%)
361 (0.96%)

1

N110
47, 0x10 0x7d
283 (9.95%)

7491 (19.96%)

N308
28, 0x72 0x94
145 (5.10%)
2702 (7.20%)

N146
20, 0x40 0x00
138 (4.85%)

3935 (10.49%)

N309
0 (0.00%)
616 (1.64%)

0

N310
145 (5.10%)
2086 (5.56%)

1

N314
27, 0x10 0x71
67 (2.36%)

1083 (2.89%)

N317
27, 0x10 0x71
71 (2.50%)

1058 (2.82%)

N315
67 (2.36%)
955 (2.55%)

1

N316
0 (0.00%)

128 (0.34%)
0

N318
71 (2.50%)
925 (2.47%)

1

N319
0 (0.00%)

133 (0.35%)
0

N320
28, 0x72 0x94
71 (2.50%)

1060 (2.83%)

N152
28, 0x70 0x14
816 (28.70%)
2834 (7.55%)

N321
0 (0.00%)

133 (0.35%)
0

N322
71 (2.50%)
927 (2.47%)

1

N153
745 (26.20%)
832 (2.22%)

1

N311
28, 0x71 0x69
71 (2.50%)
1319 (3.52%)

N312
0 (0.00%)

607 (1.62%)
0

N313
71 (2.50%)
712 (1.90%)

1

N138
3 (0.11%)
36 (0.10%)

1

N178
12 (0.42%)
208 (0.55%)

2

N77
2, 0x7b 0x38
89 (3.13%)

1630 (4.34%)

N80
30, 0xac 0x10
634 (22.30%)

16743 (44.62%)

N78
62 (2.18%)

1121 (2.99%)
3

N79
27 (0.95%)
509 (1.36%)

3

N95
10, 0x46 0x33
607 (21.35%)

16131 (42.99%)

N98
9, 0x9c 0xb2
27 (0.95%)
612 (1.63%)

N209
31, 0x10 0x72
561 (19.73%)

15488 (41.28%)

N128
28, 0x70 0x32
46 (1.62%)
643 (1.71%)

N133
5 (0.18%)
74 (0.20%)

1

N134
16, 0x00 0x28
22 (0.77%)
538 (1.43%)

N302
26, 0xc4 0xe3
0 (0.00%)

3539 (9.43%)

N272
38, 0xe9 0xca
561 (19.73%)
11308 (30.14%)

N129
0 (0.00%)
12 (0.03%)

0

N296
22, 0x80 0x06
46 (1.62%)
468 (1.25%)

N303
0 (0.00%)
12 (0.03%)

0

N304
0 (0.00%)

3527 (9.40%)
0

N273
0 (0.00%)

780 (2.08%)
0

N305
16, 0x00 0x28
561 (19.73%)
9705 (25.86%)

N306
195 (6.86%)
3497 (9.32%)

1

N307
366 (12.87%)
6208 (16.54%)

2

N297
36 (1.27%)
307 (0.82%)

2

N298
10 (0.35%)
161 (0.43%)

2

N235
3 (0.11%)
38 (0.10%)

1

N173
8, 0x20 0x89
19 (0.67%)
500 (1.33%)

N287
57, 0x14 0x00
0 (0.00%)

159 (0.42%)

N277
19 (0.67%)
341 (0.91%)

2

N288
0 (0.00%)
81 (0.22%)

0

N289
0 (0.00%)
78 (0.21%)

0

(a) IDEVAL, week 2 data set at 240th tick

File /home/acowpert/NetAdhict/IEEEPaper/data/LinconLabs/concatenated/ll-2.tcpdump
 Time 241
Queues 51

Last 10 Minutes 350
Last 180 Minutes 35779
Total Packets 3337212

N2
31, 0x10 0x70
350 (100.00%)

35779 (100.00%)

N5
14, 0x45 0x10
135 (38.57%)
3967 (11.09%)

N8
7, 0xc0 0x4f
215 (61.43%)

31812 (88.91%)

N119
10, 0x46 0x33
0 (0.00%)
49 (0.14%)

N32
1, 0x10 0x5a
135 (38.57%)
3918 (10.95%)

N17
14, 0x45 0x10
45 (12.86%)

13774 (38.50%)

N44
0, 0x00 0x00
170 (48.57%)

18038 (50.42%)

N245
16, 0x00 0x29
0 (0.00%)
48 (0.13%)

N160
0 (0.00%)
1 (0.00%)

0

N68
19, 0x0b 0x00
65 (18.57%)
974 (2.72%)

N74
16, 0x00 0x3f
70 (20.00%)
2944 (8.23%)

N290
26, 0xc5 0xda
0 (0.00%)
17 (0.05%)

N293
26, 0xc5 0xda
0 (0.00%)
31 (0.09%)

N291
0 (0.00%)
17 (0.05%)

0

N292
0 (0.00%)
0 (0.00%)

0

N294
0 (0.00%)
31 (0.09%)

0

N295
0 (0.00%)
0 (0.00%)

0

N69
15 (4.29%)
55 (0.15%)

1

N107
169, 0x04 0xac
50 (14.29%)
919 (2.57%)

N75
0 (0.00%)

383 (1.07%)
0

N92
73, 0x61 0x64
70 (20.00%)
2561 (7.16%)

N108
1 (0.29%)
12 (0.03%)

1

N284
48, 0x10 0x00
49 (14.00%)
907 (2.54%)

N285
36 (10.29%)
436 (1.22%)

2

N286
13 (3.71%)
471 (1.32%)

2

N93
1 (0.29%)

481 (1.34%)
1

N257
16, 0x00 0x4c
69 (19.71%)
2080 (5.81%)

N299
45, 0xf0 0x00
64 (18.29%)
869 (2.43%)

N326
150, 0x51 0x80

5 (1.43%)
5 (0.01%)

N300
27 (7.71%)
366 (1.02%)

1

N301
37 (10.57%)
503 (1.41%)

1

N327
0 (0.00%)
0 (0.00%)

0

N328
5 (1.43%)
5 (0.01%)

2

N179
54, 0x00 0x00
0 (0.00%)

608 (1.70%)

N38
55, 0x00 0x00
45 (12.86%)

13166 (36.80%)

N137
28, 0xda 0x6c
10 (2.86%)
243 (0.68%)

N62
51, 0x00 0x00
160 (45.71%)

17795 (49.74%)

N222
0 (0.00%)

310 (0.87%)
0

N281
37, 0x17 0x8a
0 (0.00%)

298 (0.83%)

N53
39, 0x20 0x85
40 (11.43%)

8213 (22.95%)

N56
29, 0x10 0x70
5 (1.43%)

4953 (13.84%)

N282
0 (0.00%)

298 (0.83%)
0

N323
43, 0x3e 0xaa
0 (0.00%)
0 (0.00%)

N324
0 (0.00%)
0 (0.00%)

0

N325
0 (0.00%)
0 (0.00%)

0

N54
20 (5.71%)
361 (1.01%)

1

N83
49, 0x00 0xac
20 (5.71%)

7852 (21.95%)

N57
5 (1.43%)

144 (0.40%)
1

N116
43, 0x00 0x00
0 (0.00%)

4809 (13.44%)

N84
20 (5.71%)
361 (1.01%)

1

N110
47, 0x10 0x7d
0 (0.00%)

7491 (20.94%)

N308
28, 0x72 0x94
0 (0.00%)

2702 (7.55%)

N146
20, 0x40 0x00
0 (0.00%)

3935 (11.00%)

N309
0 (0.00%)
616 (1.72%)

0

N310
0 (0.00%)

2086 (5.83%)
0

N314
27, 0x10 0x71
0 (0.00%)

1083 (3.03%)

N317
27, 0x10 0x71
0 (0.00%)

1058 (2.96%)

N315
0 (0.00%)
955 (2.67%)

0

N316
0 (0.00%)
128 (0.36%)

0

N318
0 (0.00%)

925 (2.59%)
0

N319
0 (0.00%)

133 (0.37%)
0

N320
28, 0x72 0x94
0 (0.00%)

1060 (2.96%)

N152
28, 0x70 0x14
0 (0.00%)

2834 (7.92%)

N321
0 (0.00%)

133 (0.37%)
0

N322
0 (0.00%)

927 (2.59%)
0

N329
84, 0x00 0x01
0 (0.00%)
0 (0.00%)

N311
28, 0x71 0x69
0 (0.00%)

1319 (3.69%)

N330
0 (0.00%)
0 (0.00%)

0

N331
0 (0.00%)
0 (0.00%)

0

N312
0 (0.00%)

607 (1.70%)
0

N313
0 (0.00%)

712 (1.99%)
0

N138
0 (0.00%)
36 (0.10%)

0

N178
10 (2.86%)
207 (0.58%)

2

N77
2, 0x7b 0x38
85 (24.29%)
1623 (4.54%)

N80
30, 0xac 0x10
75 (21.43%)

16172 (45.20%)

N78
62 (17.71%)
1119 (3.13%)

3

N79
23 (6.57%)
504 (1.41%)

2

N95
10, 0x46 0x33
48 (13.71%)

15663 (43.78%)

N98
9, 0x9c 0xb2
27 (7.71%)
509 (1.42%)

N209
31, 0x10 0x72
0 (0.00%)

15020 (41.98%)

N128
28, 0x70 0x32
48 (13.71%)
643 (1.80%)

N133
5 (1.43%)
75 (0.21%)

1

N134
16, 0x00 0x28
22 (6.29%)
434 (1.21%)

N302
26, 0xc4 0xe3
0 (0.00%)

3539 (9.89%)

N272
38, 0xe9 0xca
0 (0.00%)

10840 (30.30%)

N129
0 (0.00%)
12 (0.03%)

0

N296
22, 0x80 0x06
48 (13.71%)
516 (1.44%)

N303
0 (0.00%)
12 (0.03%)

0

N304
0 (0.00%)

3527 (9.86%)
0

N273
0 (0.00%)

312 (0.87%)
0

N305
16, 0x00 0x28
0 (0.00%)

9705 (27.12%)

N306
0 (0.00%)

3497 (9.77%)
0

N307
0 (0.00%)

6208 (17.35%)
0

N297
36 (10.29%)
343 (0.96%)

2

N298
12 (3.43%)
173 (0.48%)

2

N235
0 (0.00%)
38 (0.11%)

0

N173
8, 0x20 0x89
22 (6.29%)
396 (1.11%)

N287
57, 0x14 0x00
1 (0.29%)
50 (0.14%)

N277
21 (6.00%)
346 (0.97%)

2

N288
0 (0.00%)
12 (0.03%)

0

N289
1 (0.29%)
38 (0.11%)

1

(b) IDEVAL, week 2 data set at 241st tick

Fig. 2. The IDEVAL data lacks consistency, which causes erratic, strobing trees, with clusters appearing and disappearing. Note the large amount of
empty clusters (small gray squares) in Figure 2(b).



Surges of traffic are more pronounced in the IDEVAL data
set, fitting much more closely to the passage of daytime (see
Figure 3(a)). The nighttime hours contain far less traffic than
our lab captures, providing at times only a few hundred
packets over ten-minute intervals—something remarkably
quiet for a network with thousands of machines. In contrast,
our lab (Figure 3(b)), with many fewer (but real) machines
has a steady baseline of thousands of packets in the same
sized intervals.

(a) The IDEVAL Data set

(b) CCSL data set

Fig. 3. Temporal analysis of packet distribution over one week periods in
the IDEVAL data set and our lab (CCSL). Note the IDEVAL graphs contain
data which has been modified to close the two-hour gap between traces; the
overlaid sine wave has been adjusted to account for this. The top of the
crest of the wave in both figures denotes noon, and the bottom of the valley
denotes midnight.

B. Frequency Distribution of (p, n)-grams

File /home/acowpert/NetAdhict/IEEEPaper/data/LinconLabs/concatenated/ll-2.tcpdump
 Time 4
Queues 1

Last 10 Minutes 37824
Last 180 Minutes 104815
Total Packets 104815

N1
37824 (100.00%)
104815 (100.00%)

20

Fig. 4. Example of high volumes of DNS traffic. DNS is illustrated as the
large, light blue wedge.

The breakdown of traffic in the IDEVAL data set com-
pared to our lab’s capture in Table I does not show any
significant irregularities. However, if we look at the traffic
at shorter time periods (10 minutes), we can see that some
protocols are over-populating the traffic. This is exemplified
by Figure 4 with the large amounts of DNS traffic over a 10
minute time period. The graph shows a single cluster—before
any splits have occurred—dominated by approximately 85%
DNS traffic. This is the first 40 minutes of the second week
of the data set. Little explanation is available for such a large
amount of DNS traffic effectively flooding the network.

Moreover, Figure 5 looks at offsets of the 1000 most
frequent (p, n)-grams in three periods of our lab (CCSL)
and the IDEVAL data sets. While the percentages of (p, n)-
grams throughout the three different periods of CCSL show
consistency between day and night, the percentages of the
IDEVAL data sets do not. Moreover, the consistency differ-
ence is also visible when examining the 10-minute period
against the 3-hour period it is part of. The discrepancy with
the IDEVAL data set can be clearly seen among the day (3-
hour and 10-minute) and night (3-hour) time periods with
payload (i.e. p > 53) and TCP header (i.e. 37 > p > 54)
(p, n)-grams. Note the contrast with the very consistent real
traffic also in the figure.

C. Unclassified Traffic

NetADHICT normally leaves a portion of the analyzed
traffic unclassified. These packets can be found in the furthest
right leaf of the tree in the global default cluster. In our
analysis of the IDEVAL data sets, we have noticed a lower
amount of this unclassified traffic compared to the traces
from our lab. While the lack of unclassified traffic does
potentially point to a lack of “crud” in the dataset [10],
it is also potentially due to the greater variety of network
protocols currently in use today compared to those used in
1999. Note that the majority (85.3%) of unclassified traffic



Fig. 5. Comparison of our lab (CCSL) and the IDEVAL (LL) traffic
captures over three hour and ten minute periods, separated by packet type.
The x-axis represents the two 3-hour data sets (morning and evening) of both
data sets along with the last 10 minutes of the 3-hour morning time period
of each. The y-axis describes at what packet offset p those (p, n)-grams are
found (Ethernet header, IP header, port fields, TCP header and payload).
The z-axis (height) of the graph denotes the percentage of (p, n)-grams
contained within each packet offset range. Note the relative consistency of
the CCSL traffic at different times of the day and at shorter time intervals.

from the IDEVAL data set is the loopback protocol used
for network equipment management, such as Cisco routers.

D. Classified Traffic

Figures 3(a) and 3(b) also show the rate of isolation of
traffic types. A singular cluster is a node of the ADHIC
tree which contains traffic of one classification by our port-
based classifier. Comparing our lab capture with the IDEVAL
data set, it is clear that the IDEVAL data is not as quickly
separated by protocol. This is likely due to the burstiness
of the traffic: traffic comes and goes frequently enough that
NetADHICT doesn’t have time to cluster it properly.

When looking at the classification performance, we no-
ticed further artifacts in the relative distribution of DNS
traffic. During a 10 minute tick there is a high number of
DNS requests relative to other traffic. During the tick from
approximately March 17, 1999, 00:40-00:50, 60% of the traf-
fic is DNS. Traditionally, we have seen spikes of DNS traffic
due to other protocols requiring DNS information; however,
the other 40% is primarily RIPv1 and NTP—protocols that
normally do not generate large amounts of DNS traffic. This
seems to imply that at least 20% of the traffic is arbitrary
name look-ups, without any further communication. Consider
another case as captured in Figure 4, where the majority of
traffic thus far was DNS. Thus, not only is the DNS traffic
bursty; it also does not coincide with the traffic that would
normally generate DNS requests.

VI. DISCUSSION

To summarize, NetADHICT quickly revealed a number of
unusual traffic patterns in the IDEVAL data set, illustrating

shortcomings in its simulation of normal network traffic.
Some of these patterns, such as the unusually uniform
distribution of packets [9], have been previously noted. Other
observations, in particular, the extreme temporal variation,
we believe is novel.

The contribution of this paper, however, does not lie in our
observations of the IDEVAL data set, per se. Instead, what is
notable is the ease with which we could identify the unusual
properties of the data sets. The temporal variation manifests
as remarkably dynamic tree that “strobes” in a way that
virtually never happens with traces gathered from production
networks. A modest amount of subsequent analysis then
revealed the other characteristics, such as the lack of “crud,”
identified by past researchers.

NetADHICT was designed to provide a high-level view
of network data, one that reveals large-scale patterns that
may or may not follow the bounds of IP addresses and
ports. While such functionality is potentially valuable when
monitoring production networks, here we have shown that it
is also a potentially valuable tool for the researcher, one that
complements standard packet aggregate counts and manual
packet and flow-level inspection. While there are many
patterns that it does not readily capture (such as flow counts),
we believe NetADHICT’s ability to unify high-level and low-
level network traffic views make it a powerful addition to the
network researcher’s toolbox.

The problem of creating network data sets for research
purposes is a difficult one. Synthetic and anonymized data
sets are essential resources; however, artifacts in them can
lead to conclusions that do not hold on production networks.
We believe lightweight clustering strategies such as that
employed by NetADHICT hold the potential for proac-
tively identifying data artifacts in network data—captured,
synthetic, and anonymized—so they may be factored into
experimental design. Such work should increase the quality
of research results and reduce the need for later critiques.

VII. CONCLUSION

NetADHICT provides a novel way of visualizing net-
work traffic, both as snapshots and changes over time. This
paper describes how a given synthetic data set, the 1999
DARPA/Lincoln Laboratory IDS Evaluation Data, can be
examined, and describes ways in which we have confirmed
previous shortcomings of this data set, as well as provided a
novel way to locate and analyze discrepancies within a given
data set. By uncovering the varying distribution of (p, n)-
grams in network traffic over time, NetADHICT allows
administrators and researchers to observe structural patterns
not readily observable using standard network visualizations.
This work illustrates the utility of NetADHICT in identi-
fying unusual patterns in network traces, something that is
necessary for understanding the results of any experiments
utilizing network captures. It is in this way that we believe
NetADHICT is a useful addition to the network researcher’s
toolbox.
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