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Abstract

Malicious mass-mailing activity on the Internet is a
serious and continuing threat that includes mass-mailing
worms, spam, and phishing. A mechanism commonly
used to deliver such malicious mass mail is an SMTP-
engine, which turns an infected system into a malicious
mail server. We present a technique that enables, within
a single mailing attempt in many popular network envi-
ronments, detection and containment of (even zero-day)
SMTP-engine based mass-mailing activity. Contrary to
other mass-mailing detection techniques our approach is
content independent and requires no attachment process-
ing, network traffic correlation, statistical measures, or
system behavioral analysis. It relies instead on the obser-
vation of DNS MX queries within the enterprise network.
This stateless detection technique requires minimal com-
putational resources making it ideally suited for real-time
wire-speed deployment.

1 Introduction

Internet users are inundated by a steady stream of
emails infected with malicious code, unwanted product
advertisements, and requests for personal information
from criminals masquerading as legitimate entities to en-
able the commission of fraudulent activity. The use of
gateway anti-virus (and per client) software and spam fil-
ters offers some measure of protection. However, these
perimeter defences often fail to detect zero-day worms
and viruses, often quarantine legitimate emails misidenti-
fied as spam, and do not address perhaps the most preva-
lent infection method: users unwittingly opening mali-
cious attachments. A strong argument can be made that
the best chance to detect and quarantine malicious email
occurs before it is sent outside of the enterprise network.

To date, the use of mass-mailing worms has been the
fastest way to propagate malicious mail.1 For exam-

1We define malicious mail as unwanted email unwittingly sent by
a compromised system whether or not it contains malicious code (i.e.

ple, the MyDoom mass-mailing worm at its peak was
responsible for one in every twelve Internet email mes-
sages [6]. The majority of mass-mailing worms employ
the same infection delivery mechanism: a Simple Mail
Transfer Protocol engine (SMTP-engine), which turns an
infected system into a malicious mail server. As mail
server filtering techniques become more effective, spam-
mers and phishers are resorting to hijacking ordinary PCs
(thereafter zombies) and using built in SMTP-engines or
mail proxy programs to send malicious mail without the
owner’s knowledge [3, 12]. In fact, it has been estimated
that 80% of spam is sent by spam zombies [12].

In this paper, we exploit the interaction between
SMTP-engines and DNS servers to provide a new method
to detect malicious mass-mailing activity within an en-
terprise network. In short, SMTP-engine infected clients
typically request Mail Exchanger (MX) records from a
DNS server (either their local DNS server or DNS servers
outside the network boundary) in order to locate the mail
servers that can deliver the malicious mail to their in-
tended victims. While some legitimate client systems
run their own email servers locally, most enterprise envi-
ronments use perimeter mail servers to send and receive
email.2 In this scenario, only the corporate mail servers
within the enterprise network are generally expected to
query DNS servers for MX records (see further discus-
sion, including exceptions in Section 4.2).

Our Contributions. We present a technique, imple-
mented and tested with a software prototype, to detect
and quarantine SMTP-engine mass-mailing based solely
on the observation of a DNS MX record request from
client systems. No modeling or statistical measurement
of user or network behavior is required. Furthermore, it
does not rely on attachment scanning, allowing detection
of malicious text-based emails with hypertext embedded
links to malicious websites.3 To validate these claims,

including spam).
2This allows for gateway anti-virus software at the network perime-

ter and lower cost (e.g. maintenance, support, policy enforcement) cor-
porate email.

3These websites infect a system by sending malicious code through
website content retrieved by the client system.

1



we performed tests in an isolated test network with a live
mass-mailing worm.

Our anomaly-based approach is appealing for a num-
ber of reasons:

1. Speed: in certain network environments the possi-
bility to detect and contain an SMTP-engine before
a single malicious email message can be sent.

2. Detection and containment of zero-day mass-
mailing worms: possible because the approach does
not rely on existing worm signatures.

3. Impact to quarantined system: once identified as
a malicious mass-mailer, only SMTP activity (port
25) will be blocked on the system allowing all other
user activity to proceed unhindered.

4. Low-false positive rate: empirical analysis (see Sec-
tion 4.2) suggests that client MX record requests are
rare for most users.4

5. Ease of deployment: the approach is network-based,
runs on commodity hardware, and relies on the ob-
servation of a protocol found in all networks (i.e.
DNS).

Organization. Section 2 discusses related work. Sec-
tion 3 outlines the basic approach. Section 4 presents an
empirical analysis of client MX record request activity.
Section 5 discusses our prototype and its performance in
an isolated worm test network. Section 6 contrasts our
technique with others. We conclude in Section 7.

2 Related Work

Zou et al. [23] developed a mass-mailing worm model
by profiling the user behavior of email checking times
and email attachment opening probabilities. They ana-
lyzed the impact of selective immunization defense, that
entails making the most connected email users’ systems
immune to an email worm. Their results reveal that al-
though a power law topology enables a worm to spread
more quickly, it also allows for faster containment. Their
work provides an email worm model that incorporates
user behavior and offers some insight into worm prop-
agation on a number of network topologies. The same
authors propose [22] a multi-step feedback email defence
mechanism to detect malicious email within an enterprise
network; and suggest the use of a honeypot to detect out-
going viruses.

Sidiroglou et al. [17] propose an architecture to detect
zero-day worms and viruses, which intercepts and scans

4In a university network of about 300 users over one week, we found
only 5 anomalous MX record queries from client systems. While in
most corporate environments the deployed software application base-
line differs substantially from a university network, the greater software
diversity in the latter makes it a good test environment.

every email for dangerous attachments. They employ vir-
tual machine clusters, host-based intrusion detection, and
email-worm vaccine aware Mail Transfer Agents.

Hu et al. [10] present an application of the
PAIDS (ProActive Intrusion Detection System) detec-
tion paradigm using a prototype system called BESIDES
which detects mass-mailing viruses. PAIDS employs
two general techniques: comparing a system’s behavior
against its security policy (behavior skewing) and iso-
lating illegal system behaviors in a virtual environment
(cordoning). Their prototype detected a number of real
mass-mailing worms with a low false positive rate. How-
ever, their implementation is deployed at SMTP servers
which would fail to detect SMTP-engine activity. SMTP-
engines bypass network mail servers (and even in some
cases local DNS servers) making network-based detec-
tion techniques necessary.

Gupta et al. [9] use specification-based anomaly de-
tection to detect email viruses. Their approach looks for
increases in mail traffic from clients to mail servers over
a threshold determined during a training period. Specif-
ically, the statistics of send and deliver transitions in a
state machine are maintained for both individual clients
and the entire collection of clients within the network.
Using a series of simulated experiments they detected
stealthy (e.g. polymorphic) viruses with a low false posi-
tive rate.

Wong et al. [20] performed an empirical study on
mass-mailing worm behavior using network traffic traces
from a college campus. The characteristics of two mass-
mailing worms with respect to DNS activity and TCP
traffic flows were studied. They found that changes in
network activity from infected hosts allowed for interest-
ing detection possibilities. They propose that a more in-
depth investigation of monitoring and containing mass-
mailing worms using DNS servers should be performed
as it holds promise as a way to slow down propaga-
tion. One important observation was that defences de-
signed for monitoring SMTP servers will not work well
for mass-mailing worms as they have their own SMTP-
engines.

Ishibashi et al. [11] employ a technique that uses
a Bayesian inference method to calculate and assign
a value to the suspiciousness of specific domain name
queries from individual hosts. This method assumes that
there is partial prior information about the normal char-
acteristic domain name queries from the network. Sig-
natures are manually derived from the query content of
suspected worm infected hosts. Hosts that send domain
requests that match the signature query content are as-
sumed to be infected with a mass-mailing worm. Their
technique is not suitable for detecting zero-day worms in
real-time as it requires both manual analysis and a prede-
termined signature to identify suspected worm activity.
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Whyte et al. [18] used DNS activity to detect the pres-
ence of scanning worms within an enterprise network.
The observation of connections outside the network not
preceded by a DNS query was considered anomalous and
a strong indicator of scanning worm activity. They hy-
pothesized that MX queries from client systems could in-
dicate mass-mailing worm infection, but recognized that
the detection and containment of mass-mailing worms
would require the collection of different network data
(i.e. a data set with substantial mail activity) and a dif-
ferent approach that was out of scope with the scanning
worm detection technique. In contrast to their work we:
(1) implement a new detection paradigm, (2) construct a
prototype that processes DNS MX records and performs
containment as opposed to pure detection, and (3) ana-
lyze a much larger network trace that includes SMTP ac-
tivity.

Finally, closely related work on this subject was per-
formed by Musashi et al. [15, 14, 13]. In independent
work from [18],5 they also recognized that MX query
activity from client systems could indicate mass-mailing
worm infection, and developed an indirect virus detec-
tion system (MXRPDS) that detects mass-mailing worm
infection by monitoring DNS server and PC terminal in-
teraction. In their implementation, they poll the DNS
server syslog file every 10 seconds to determine client
queries of A, MX and PTR records. Any client that ac-
cesses the DNS server for MX and A records without
PTR records is considered to be infected with a mass-
mailing worm. Clients that request a mixture of MX,
A, and PTR records are considered to be spam relays.
Their DNS host-based approach has a number of dis-
advantages compared to our network-based implemen-
tation. Specifically, a host-based approach does not ad-
dress a common technique employed by SMTP-engines
to obtain MX records by querying both local and remote
DNS servers. Parsing of a local DNS’s syslog file will
not detect remote DNS accesses and introduces signifi-
cant false negatives. Additionally, processing the DNS
syslog every 10 seconds allows a newly infected system
to remain active during this time sending potentially hun-
dreds of malicious emails. Finally, they propose no way
to quarantine the infected systems once detected.

Regarding a discussion of alternate proposals to ad-
dress malicious mass-mailing activity, see Section 6.

3 Review of Normal vs. Malicious Email
Delivery

In this section, we contrast normal email delivery with
email sent from a host with an SMTP-engine. Our tech-
nique is based on this simple observation. We assume an
enterprise or corporate environment.

5The results of the present paper first appeared in May 2005 [19].
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Figure 1. Normal Email Delivery.
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Generally, to generate an email message a user ac-
cesses local email client software responsible for sending
the email to the mail server specified in its configuration
file. Then, the mail server sends and delivers email on
behalf of the users within its domain.

In order to determine the IP addresses of the mail
servers responsible for delivering mail to the intended
recipients, DNS MX queries are made. An MX record
identifies the mail server responsible for sending and
delivering emails for a Fully Qualified Domain Name
(FQDN). Figure 1 illustrates the steps required to send
an email message.

1. User to mail server interaction: a user in the en-
terprise network uses their email client to compose
an email for a recipient or list of recipients. Once
completed, the email client forwards the email to its
local mail server for delivery.

2. Mail server to DNS server interaction: mail
servers are store-and-forward systems. Once a mail
server receives an email, it accesses the recipi-
ent list to determine where it must be delivered.
The recipient list contains addresses of the form
user@host.domain as specified in RFC 822 [8]. The
user field will be a unique identifier for the par-
ticular domain. The host.domain field contains the
host’s FQDN. DNS servers use the FQDN to locate
the mail servers that service the respective domain.
As shown in Figure 1, the local DNS server happens
to have the MX record in its cache for the recipient’s
domain and sends the IP address of the mail server
identified in the MX record to the local mail server.

3. Mail server to mail server interaction: using the IP
address contained in the MX record, the local mail
server sends the email to the intended recipient’s
mail server. In turn, the recipient’s mail server sends
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Figure 2. SMTP-engine Malicious Mass-Mailing Delivery.

the email to the local client of the user specified in
the email address.
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In contrast to a normal email generation, mass-
mailing activity via SMTP-engines bypasses corporate
mail servers when it attempts to send malicious mail.
Malicious mass-mailing software can either interrogate
the host system to harvest email addresses (e.g. mass-
mailing worm) or be supplied with a recipient list (e.g.
spam) to send the malicious messages. In either case,
here the SMTP-engine of the infected system is respon-
sible for sending the malicious mail messages directly.
In order to determine the mail server that services a par-
ticular recipient, the infected system, not the local mail
server, queries a DNS server for an MX record associated
with the email recipient’s FQDN. Figure 2 illustrates the
steps an infected host with an SMTP-engine performs to
send an email message.

1. Infected host to local DNS server interaction: an
internal system in the network is infected with
malicious mass-mailing software that includes an
SMTP-engine. To send mail, the infected system
must forward MX queries to a DNS server. As
shown in Figure 2(a), 1, the query is sent to the local
DNS server which happens to have in its cache the
MX record for the recipient’s domain and sends the
MX record to the infected system.

2. Infected host to external DNS server interaction: al-
ternately, the infected system can query an external
DNS server (i.e. Figure 2(a), 2) for an MX record.6

6For instance, during the SoBig.F outbreak, Verisign discovered

3. Infected host to mail server interaction: the infected
system sends the malicious email to the mail server
responsible for the recipient specified in the email
address. The local mail server is bypassed com-
pletely.

4 Basic Approach and MX Record Activity
Analysis

Detection Approach - High Level Overview. Mali-
cious mass-mailing software that use SMTP-engines by-
pass local mail servers but must still rely on DNS servers
to locate the respective mail servers of their intended vic-
tims. Client-based MX requests are a violation of typical
DNS behavior in the network.

To detect SMTP-engine malicious mass-mailing activ-
ity we simply observe all locally generated MX queries
that originate from systems other than the (known) net-
work mail servers. These systems are regarded as poten-
tially infected and after a certain number (configurable
within our prototype) of MX queries are observed, they
are quarantined from the network. Quarantining a sys-
tem involves restricting it from directly performing any
SMTP (i.e. port 25) network activity. Note that this dif-
fers from blocking port 25 activity of all (non-server) sys-
tems, which is discussed in Section 6.1.

Our detection technique relies on the hypothesis that
MX query activity from ordinary client systems is dis-
tinguishable from those that perform mass-mailing. To
confirm this hypothesis we monitored the internal client
accesses of two DNS servers (a primary and secondary

DNS MX lookups from tens of thousands of systems to its root DNS
server [4].
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Table 1. One-week Survey of DNS Record Activity.
Record Type Number of Records
PTR 194 140
AAAA 99 019
SOA 17 800
A 2 074 620
CNAME 72
MX 211 697
NS 4 056

DNS server) for a medium sized departmental network
within our university.
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To understand the prevalence and behavior of MX
record activity within a network of diverse clients, we
observed a network that services a population of approx-
imately 300 client systems used by faculty, administrative
staff, and students. These systems contain a variety of op-
erating systems that include Windows platforms, Linux,
BSD, and SunOS. We monitored all internal (within the
department network) and external accesses (outside of
the department network including the Internet) of both
DNS servers over a one week period. Table 1 shows the
total DNS record activity for both DNS servers.

DNS A (authoritative) records are the most active type
of DNS records observed. This is expected as DNS A
records provide the mapping between the numeric IP ad-
dress of a system and its FQDN. DNS A records are re-
quired for most routine connection requests between re-
mote systems (e.g. HTTP). MX record activity is the sec-
ond most requested DNS resource record.

<(�! K7���%�C1	/9"#@LAM�C$D�	��ENF.$H/������+/O�NFP1(���+��'J�%'

MX record requests from external systems and in-
ternal mail servers are a normal occurrence. We ana-
lyzed the MX query activity within our network to de-
termine if any client systems (i.e. not authorized mail
servers) performed any MX queries. Table 2 shows that
of the approximately 300 internal systems serviced by
the two DNS servers, only five clients made MX record
requests during the one week analysis period. Two of
these (10.0.0.68 and 10.0.0.42)7 made a total of 1705 MX
record requests to 133 unique FQDNs. System 10.0.0.68
is owned by a network administrator who, as part of a
strategy to combat spam, was testing SpamAssassin [1].
We confirmed that the MX request activity in question
from this system was performed as part of this soft-
ware testing. System 10.0.0.42 was owned by a user.

7IP addresses have been anonymized.

A quick inspection of the system configuration deter-
mined that this activity was the result of a mis-configured
cronjob requesting nonexistent MX records (i.e. local-
host.localdomain) from the DNS server.

The remaining three (10.0.0.36, 10.0.0.51, and
10.0.0.83) systems were responsible for a total of 5 MX
record requests over the one-week test period. As the IP
addresses that corresponded to these three systems were
assigned via DHCP, the necessary logs to perform user
attribution for these IP addresses do not exist. Therefore,
an analysis of the cause of these MX queries was not pos-
sible. Given the low number of unexplained MX queries
(i.e. 5) we conjecture that these are likely caused by iso-
lated MX lookups (e.g. perhaps evidence of mail relaying
through 3rd party mail servers). The conclusion we draw
from this analysis is that most client systems within this
network do not perform MX queries even though it is a
heterogeneous software environment (e.g. university net-
work). If we assume this network is representative, our
technique is generally viable as there are very few false
positives.

However, there may be instances in which a user at a
client system needs to legitimately access SMTP services
directly and request MX records (e.g. a mobile user with
a laptop wanting to relay mail through their own home
mail servers). We believe this activity is discernible from
mass-mailing activity and can easily be accommodated
by any containment approach.

5 Prototype and Analysis

In this section, we describe our software prototype de-
tection and proof-of-concept containment system. We
also discuss its performance in detecting and containing a
live mass-mailing worm within an isolated test network.

QR��� 6S����/J�2/O��TU�

To validate our SMTP-engine detection and contain-
ment technique, we developed and tested a fully func-
tional software prototype. The software was installed on
a commodity PC with a Linux operating system. The pro-
totype processes network data in real-time and performs
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Table 2. MX Record Lookups.
IP Address MX Requests Unique MX Requests Reason
10.0.0.68 1691 132 System admin SpamAssassin test

system.
10.0.0.42 14 1 Mis-configured cron job sending mail

to localhost.localdomain.
10.0.0.36 3 3 DHCP system - unexplained.
10.0.0.51 1 1 DHCP system - unexplained.
10.0.0.83 1 1 DHCP system - unexplained.

two distinct functions: (1) detection of SMTP-engine
mass mailing activity, and (2) containment of systems
that exhibit SMTP-engine mass-mailing activity. We now
discuss these two functions in turn.

Detect. The only network data feature extraction re-
quired by the prototype to detect SMTP-engine mass-
mailing activity is DNS MX queries. If any client sys-
tem performs a DNS MX query (local or external) this
is considered potential malicious mass-mailing activity.
MX queries originating from authorized mail servers (or
other systems authorized to use SMTP) are exempt from
the detection algorithm through the use of a whitelist.

Contain. Once potential SMTP-engine mass-mailing
activity is detected, the prototype uses IPTables [2] to
stop all SMTP activity from the client. IPTables soft-
ware is included within the Linux kernel and provides a
generic specification of rule sets that allows for stateful
packet filtering. When a client system, not enumerated
within the whitelist, exceeds the number of allowed MX
queries, a rule is added to IPTables that restricts port 25
(SMTP) activity (both outgoing and incoming) from that
client’s source address.

Configuration Discussion. False positives are an im-
portant concern. A balance must be struck between rapid
detection and impact to users due to unwarranted con-
tainment. Our prototype can be configured to restrict
SMTP activity after the observation of any number (e.g.
1 or more) of MX queries within a given time interval.
This flexibility enables the reduction of false positives
(see Section 5.3), and the ability to allow mail relaying in
the network if permitted (see discussion in Section 6.1).

Regardless, in our current implementation even if a
false positive occurs a contained client system is only
restricted from performing SMTP activity. The client
is allowed unhindered access to all other network ser-
vices. However, it could be argued that if we suspect a
client system contains a malicious SMTP-engine, it may
contain other active infection vectors (e.g. network share
traversal, scanning). In this case, it may be a prudent
containment decision to generate the necessary IPTables
rules to restrict all network access from the client.

A further consideration for the prototype is network
placement. The two most important placement consider-

ations are (cf. Fig. 2(a)): (1) enabling detection of all MX
query activity (i.e. remote and local), and (2) the ability
to restrict the network access of infected systems. Most
SMTP-engines are configured to query the local DNS
server for MX records first. In the event the local DNS
server cannot be accessed, some SMTP-engines contain
a list of remote DNS servers to query. The prototype
should be placed where it can monitor all MX activity on
the network (e.g. to also detect the use of external DNS
servers). Furthermore, in order to restrict the SMTP ac-
tivity of infected systems, the containment device must
be placed at all egress points on the network.

QR�� V��+�2�NWX�	��
Y����/=,>�	��?Z4��C'[/���1�;

To conduct our prototype evaluation, we tested it
against a live worm within an isolated network test en-
vironment. The network was used to: (1) observe the
behavior of SMTP-engine mass-mailing systems, and (2)
test the effectiveness of our prototype. The isolated worm
test network is attached to a fully functional research net-
work that in turn connects to a university department net-
work. All of these networks (with the exception of the
isolated worm test network) share part of our university’s
Class B IPv4 Internet address space.

To prevent inadvertent infection of systems during
testing, we placed a firewall between the isolated worm
test network and the research network. The firewall rules
allowed only DNS traffic to enter or leave the isolated
worm test network. Additionally, we physically (and log-
ically) isolated all the worm test network IP addresses on
a separate switch using a VLAN with non-routeable IP
addresses (i.e. 192.168.1.0/24 [16]). To confirm the va-
lidity of our approach we infected a system within the
worm test network with the NetSky.Q.mm mass-mailing
worm [5] and observed its behavior for 10 minutes. Table
3 shows the network activity from the infected system.
Within 10 minutes the system generated 194 MX queries
to our local DNS server looking to resolve 37 unique mail
server FQDNs. Additionally, after an initial burst of MX
query activity, the infected system attempted to contact
44 external mail servers via SMTP.

Once the 10 minute observation period ended, we re-
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Table 3. NetSky.Q.MM Network Activity (10 minute period).
Activity Unique Requests Total Requests

MX Record Queries 37 194
A Record Queries 24 24

SMTP connections 44 322

moved the worm infection from the system using anti-
virus software. The prototype was then placed in-line be-
fore the firewall. The client system was reinfected with
the mass-mailing worm and the network traffic was ob-
served. Our prototype detected the first MX query and
blocked all SMTP traffic from the infected host. Audit
logs from both the firewall and our prototype confirm
that no subsequent SMTP traffic from the infected sys-
tem passed through the in-line prototype.

Q��\� �]�%'^$�&('^'J�%�_1 �2`ba��2�+'J�c6d�	'J�+/��+�2�C'e��1(E
���C;2�f/��+�2�C'

The following two sections discuss the impact and
causes of false positives and negatives on our detection
technique.

False Positives. In our analysis of MX query activity
in Section 4.2, we discovered that over a one-week pe-
riod only 5 unexplained MX queries were made by client
systems. Although this suggests that no widely installed
client application requires MX records to access external
mail servers, these queries would still be a source of false
positives. Using our current configuration, our prototype
would have erroneously contained three systems during
the observation period.

However, the prototype could be set to restrict access
after the observation of more than a single MX query
within a specified time window (see Section 5.1). For
instance, during the same one-week observation period
if we had set the prototype to contain a client system af-
ter the observation of two or more MX queries within a
20 minute time period then no false positives would have
occurred. If any client requires the use of its own SMTP
server, then two options exist. First, its IP address could
be added to the whitelist to exempt it from detection and
containment. Second, the prototype could be configured
to allow clients a certain number of MX queries within a
given time interval before quarantine occurs.

False Negatives. The prototype permits client MX
record request activity within the enterprise network
through the use of a whitelist. For instance, in the depart-
ment network we observed in Section 4.2 the whitelist
would consist of four entries (i.e. three authorized mail
servers and the SpamAssassin test system). If a system
on the whitelist becomes infected with a mass-mailing
SMTP-engine, its malicious mailing activity will not be
detected.

QR�\< V���
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Limitations. Instead of using SMTP-engines to send
email, compromised systems could use the resident email
client software. In this case, the corporate mail server
would perform the MX queries on behalf of the system
and this would not be detected by our technique. How-
ever, an attacker using this strategy would not benefit
from the advantages of using SMTP-engines.

SMTP-engines allow mass-mailing worms to circum-
vent corporate mail servers and send infected emails di-
rectly from the victim system. Furthermore, there is no
requirement for the worm to have the capability to detect
and then use disparate email clients on victim systems.
This ensures that emails can be generated and sent re-
gardless of the email client software used by the victim,
thus increasing the worm’s propagation rate.

Additionally, the use of an SMTP-engine obviates the
need for the worm to interact with the victim system’s
email client resulting in fewer signs of an active infec-
tion. For example, no copies of the infected emails will
appear in the sent items folder of the infected system’s
email client.

Circumvention. If an infected system contained a list
of IP addresses for the mail servers it wanted to send mail
to, then no MX queries would be required. However, this
would limit the infected system to sending mail to pre-
determined domains. While this may be a questionable
strategy for opportunistic mass-mailing worms, it may
be acceptable when sending spam where a recipient’s list
may be available. In this scenario, although the attacker
would still need to perform MX queries, these could be
made offline and thus undetectable by our technique.

Another way to avoid detection would be to have the
infected systems contact a system outside of the enter-
prise network to perform DNS queries on their behalf.
Communications to this covert proxy DNS server could
be tunneled through the network using an arbitrary non-
filtered port. Our implementation of the technique cur-
rently can not detect DNS activity tunneled through the
arbitrary ports (i.e. ports other than port 53).

6 Comparison with Alternate Approaches

In this section, we compare our technique to sev-
eral existing techniques that attempt to prevent malicious
mass-mailing.
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Many enterprises and ISPs have instituted port 25
blocking at the network boundary to stop malicious
SMTP-engine mass-mailing activity. This prohibits users
running SMTP services locally. Mail relaying to 3rd
party mail servers is typically allowed only through the
ISP’s mail servers. Indiscriminate port 25 blocking and
the mandating of mail relaying activity to specific mail
servers has proved to be both an unpopular and question-
able strategy, with disadvantages including:

1. Detection of infected systems: port blocking alone
will not identify malicious mass-mailers.

2. Impact to user privacy: mandatory mail relaying
through an ISP’s mail servers closely ties the user’s
identity to the ISP’s network.

3. Impact to user choice: mandating how mail should
be forwarded breaks a fundamental design principle
of the Internet (i.e. flexibility) and takes away user
options.

4. Circumvention: mass-mailers have begun to evade
port blocking by setting up servers to use arbitrary
ports (i.e. other than port 25) to relay mail from
mass-mailing zombies.

Wholesale port 25 blocking is a quixotic solution:
it addresses the problem of stopping malicious SMTP-
engine mass-mailing activity, at the expense of denying
all legitimate client-based SMTP activities. In contrast,
our prototype can contain SMTP traffic from a client sys-
tem after any number of MX query attempts within a con-
figurable time interval.

During our testing (see Section 5.2) we configured our
prototype to restrict SMTP activity once it detected the
first MX query attempt from a client system. This rule
effectively restricts MX queries to the exclusive domain
of the network mail servers specified in the whitelist dur-
ing initialization. This decision was directly supported
by our analysis of client MX query activity presented in
Section 4.2. In other network environments it may be an
appropriate strategy to contain a client system after ob-
serving some number of MX queries (e.g. prq ) within an
arbitrary time interval. For instance, this strategy would
be recommended for networks where it is common prac-
tice to allow users to relay mail to 3rd party mail servers.
In this case, the prototype could be set to contain a client
system after observing MX record activity greater than
that required to resolve the FQDNs of a finite number of
3rd party mail servers. Although our approach can be as
restrictive as port 25 blocking (e.g. quarantine after a sin-
gle MX query is observed), it offers a means to allow a
configurable amount of client-based mailing.
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Sender Policy Framework (SPF) [21] is designed to
reduce email address forgery. Domain owners publish
SPF records that specify the systems authorized to send
mail for that domain. The recipient of an email performs
a check to determine if the sending MTA is listed in the
SPF record for the domain specified in the sender’s email
address. If not, it is flagged as suspicious (e.g. poten-
tial spam) or simply rejected. SPF breaks simple mail
forwarding, which preserves the from address within an
email header as it travels through different mail servers.
In order to be verified by SPF, mail forwarding must be
replaced by some form of re-mailing (i.e. the sender field
is changed to reflect the address of the last mail server
hop).

An alternate proposal to address email address forgery
is DomainKeys [7]. Unlike SPF, it is designed to ver-
ify both the domain of the sender and the contents of the
message. The integrity of the message is ensured by the
use of a digital signature over a SHA-1 hash of the mail
message (selected header fields and body), by the send-
ing mail server’s private key. To verify the message, the
receiving mail server performs a DNS lookup for a record
that contains the sending domain’s public key. Signature
verification is assumed to imply that the email came from
the claimed domain and it has not been modified in tran-
sit. A mail server receiving an unsigned mail message
may flag it as suspicious or simply choose to reject it.
Potential issues arise from the fact the entire email mes-
sage (including header) is hashed. Mail message headers
are often legitimately altered by mail list servers, spam
filters, and even ordinary mail servers, causing signature
verification to fail. Additionally, this approach entails
both computational and administrative overhead as a re-
sult of the cryptographic services.

Both SPF and DomainKeys are designed to detect
spoofed email as it is received at network mail servers.
However, SMTP-engines bypass corporate mail servers
completely. These techniques would be ineffective in
preventing the origination of mass-mailing from unautho-
rized SMTP-engines; such mail would be stopped at the
receiving end only after it has been sent. In contrast, our
approach stops such mail at the sending end. Further-
more, mail that fails SPF or DomainKeys checks may
not be rejected in favor of using the failure result as an
input flag to a client spam filter. It is common practice
for spam filters to archive mail identified as spam in a
spam directory for user review. In this case, the malicious
mail under discussion may still consume bandwidth, net-
work server processing, disk space, and the user’s time.
Our approach can be used in conjunction with these tech-
niques to enable both the verification of incoming mail
and the eradication of mass-mailing from SMTP-engines
before mail is ever sent.
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7 Concluding Remarks

While promising current techniques to address mali-
cious mass-mailing activity (e.g. SPF [21], DomainKeys
[7]) offer a way to identify forged mail as it is received
by network mail servers, they are not designed to de-
tect or stop malicious mass-mailing that bypasses autho-
rized mail servers (e.g. SMTP-engines) before it leaves
the enterprise network. Our approach could be applied
as a complementary technique to rapidly and accurately
detect and contain malicious SMTP-engine mail propa-
gation within an enterprise network (i.e. stopped at the
sending end before traversal of the Internet).

A further benefit of our technique over existing mass-
mailing detection techniques is that it is email content
independent. The detection technique being based on in-
direct network behaviors (i.e. MX record queries) allows
us to detect mass-mailing activity from client systems re-
gardless of whether it is stealthy (e.g. slow spreading),
polymorphic, attachment-based, or spread by embedded
URLs in text messages.

Although our approach can be as restrictive as port
25 blocking for all clients in the network (i.e. quaran-
tine occurs after a single MX query), it is flexible enough
to allow a number of MX queries to occur from a client
system before quarantine occurs. For instance, this may
allow legitimate users to relay mail through 3rd party
mail servers of their choice. We believe that, in gen-
eral, wholesale port blocking should only be used as
an effective stop-gap measure until a more considered
countermeasure is developed; policies like port block-
ing typically do not address the root problem, in this
case the identification and quarantining of only malicious
mass-mailing systems. Additionally, our technique could
be used in conjunction with proposals to address mail
forgery (i.e. SPF and Domain Keys) to offer a more com-
prehensive strategy to stop malicious mass-mailing.
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