Counting Inversions and Related Problems
By Timothy M Chan and Mihai Patrascu

Saran Neti

November 14, 2010

Saran Neti Counting Inversions

Outline

@ Introduction
@ Permutations
@ Inversions

© Concepts
@ Offline/Online Algorithms

@ Radix Sort
@ Word RAM Model of computation

© Results

@ History
@ The main result

Saran Neti Counting Inversions

Introduction
Permutations
Inversions

Outline

@ Introduction
@ Permutations

Saran Neti Counting Inversions

Introduction
Permutations
Inversions

What is a permutation?

e Given a set S, a permutation 7 of S is a set S containing all
elements of S, but in a different order.

Saran Neti Counting Inversions

Introduction
Permutations
Inversions

What is a permutation?

e Given a set S, a permutation 7 of S is a set S containing all
elements of S, but in a different order.

o eg. m{1,3,2} ={2,1,3}, m{1,3,2} = {1,2,3} etc

Saran Neti Counting Inversions

Introduction
Permutations
Inversions

What is a permutation?

e Given a set S, a permutation 7 of S is a set S containing all
elements of S, but in a different order.

o eg. m{1,3,2} ={2,1,3}, m{1,3,2} = {1,2,3} etc
@ There are n! permutations for a set of n elements.

Saran Neti Counting Inversions

Introduction
Permutations
Inversions

What is a permutation?

e Given a set S, a permutation 7 of S is a set S containing all
elements of S, but in a different order.

o eg. m{1,3,2} ={2,1,3}, m{1,3,2} = {1,2,3} etc
@ There are n! permutations for a set of n elements.

Saran Neti Counting Inversions

Introduction
Permutations
Inversions

Outline

@ Introduction

@ Inversions

Saran Neti Counting Inversions

Introduction
Permutations
Inversions

What is an Inversion?

@ The number of inversions in a permutation 7 is defined as the
number of pairs i < j with 7(i) > n(j)

Saran Neti Counting Inversions

Introduction
Permutations
Inversions

What is an Inversion?

@ The number of inversions in a permutation 7 is defined as the
number of pairs i < j with 7(i) > n(j)

@ e.g. The number of inversions in {1,6,2,9,5} =3

The actual sorted order is {1,2,5,6,9}
The pair {6,2},{6,5},{9,5} are in the “wrong” order

Saran Neti Counting Inversions

Introduction
Permutations
Inversions

is an Inversion?

@ The number of inversions in a permutation 7 is defined as the
number of pairs i < j with 7(i) > n(j)

@ e.g. The number of inversions in {1,6,2,9,5} =3
The actual sorted order is {1,2,5,6,9}
The pair {6,2},{6,5},{9,5} are in the “wrong” order

@ Inversion is a measure of deviation from a sorted order. We
want to “flip” the inversion pairs to get the sorted order.

Saran Neti Counting Inversions

Introduction
Permutations
Inversions

is an Inversion?

@ The number of inversions in a permutation 7 is defined as the
number of pairs i < j with 7(i) > n(j)

@ e.g. The number of inversions in {1,6,2,9,5} =3
The actual sorted order is {1,2,5,6,9}
The pair {6,2},{6,5},{9,5} are in the “wrong” order

@ Inversion is a measure of deviation from a sorted order. We
want to “flip” the inversion pairs to get the sorted order.

@ Question - Given a permutation, how do you count the

number of inversions in it 7
i.e How messed up it is from a nice sorted order.

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Outline

© Concepts
@ Offline/Online Algorithms

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Offline/Online algorithms

@ An online algorithm runs in a serial manner, and produces
output as and when it receives input.

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Offline/Online algorithms

@ An online algorithm runs in a serial manner, and produces
output as and when it receives input.

@ An offline algorithm runs after the entire input has been
received. Can Offline be better than Online?

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Offline/Online algorithms

@ An online algorithm runs in a serial manner, and produces
output as and when it receives input.

@ An offline algorithm runs after the entire input has been
received. Can Offline be better than Online?

o e.g Canadian Traveller's Problem - Given a graph with some
unreliable (dotted) edges, find the shortest path to a
destination. You'll know if an edge is unreliable when you
reach vertex containing the edge.

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Outline

© Concepts

@ Radix Sort

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Radix Sort - Sorting without comparision

@ Radix Sort sorts number based on the “radix” or “base”.

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Radix Sort - Sorting without comparision

@ Radix Sort sorts number based on the “radix” or “base”.

@ e.g Sorting the following base-10 numbers: 170, 045, 075,
090, 002, 024, 802, 066

Saran Neti Counting Inversions

Offline/Online Algorithms
Concepts Radix Sort
Word RAM Model of computation

Radix Sort - Sorting without comparision

@ Radix Sort sorts number based on the “radix” or “base”.

@ e.g Sorting the following base-10 numbers: 170, 045, 075,
090, 002, 024, 802, 066

@ Sort by Unit's place - 170, 090, 002, 802, 024, 045, 075, 066

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Radix Sort - Sorting without comparision

@ Radix Sort sorts number based on the “radix” or “base”.

@ e.g Sorting the following base-10 numbers: 170, 045, 075,
090, 002, 024, 802, 066

@ Sort by Unit's place - 170, 090, 002, 802, 024, 045, 075, 066

@ Sort by 10s place - 002, 802, 024, 045, 066, 170, 075, 090

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Radix Sort - Sorting without comparision

Radix Sort sorts number based on the “radix” or “base”.

e.g Sorting the following base-10 numbers: 170, 045, 075,
090, 002, 024, 802, 066

Sort by Unit's place - 170, 090, 002, 802, 024, 045, 075, 066

Sort by 10s place - 002, 802, 024, 045, 066, 170, 075, 090

Sort by 100s place - 002, 024, 045, 066, 075, 090, 170, 802

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Radix Sort - Sorting without comparision

@ Radix Sort sorts number based on the “radix” or “base”.

@ e.g Sorting the following base-10 numbers: 170, 045, 075,
090, 002, 024, 802, 066

@ Sort by Unit's place - 170, 090, 002, 802, 024, 045, 075, 066
@ Sort by 10s place - 002, 802, 024, 045, 066, 170, 075, 090
@ Sort by 100s place - 002, 024, 045, 066, 075, 090, 170, 802

@ For a set of n numbers, L bits each, Radix Sort takes O(nL)
time.

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Radix Sort - Sorting without comparision

@ Radix Sort sorts number based on the “radix” or “base”.

@ e.g Sorting the following base-10 numbers: 170, 045, 075,
090, 002, 024, 802, 066

@ Sort by Unit's place - 170, 090, 002, 802, 024, 045, 075, 066
@ Sort by 10s place - 002, 802, 024, 045, 066, 170, 075, 090
@ Sort by 100s place - 002, 024, 045, 066, 075, 090, 170, 802

@ For a set of n numbers, L bits each, Radix Sort takes O(nL)
time.

@ In case of binary representation, L = logon, and we get the
familiar O(nlogn) time.

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Outline

© Concepts

@ Word RAM Model of computation

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Why Turing Machine?

@ We don't use Turing Machines in practice...no tapes, symbols
or transition functions, etc.

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Why Turing Machine?

@ We don't use Turing Machines in practice...no tapes, symbols
or transition functions, etc.

@ Practical Computers use Hierarchical Memory organization.

L1 Cache -> L2 Cache -> SRAM -> DRAM -> Hard Disk ->
Tape Storage

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Why Turing Machine?

@ We don't use Turing Machines in practice...no tapes, symbols
or transition functions, etc.

@ Practical Computers use Hierarchical Memory organization.
L1 Cache -> L2 Cache -> SRAM -> DRAM -> Hard Disk ->
Tape Storage

@ Faster memory is more expensive and vice versa.

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Why Turing Machine?

@ We don't use Turing Machines in practice...no tapes, symbols
or transition functions, etc.

@ Practical Computers use Hierarchical Memory organization.
L1 Cache -> L2 Cache -> SRAM -> DRAM -> Hard Disk ->
Tape Storage

@ Faster memory is more expensive and vice versa.

@ Can we build a more realistic computational model than a
Turing machine?

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Assumptions in a Word RAM model

@ Memory is organized into words of size w.
A word is 32 bits, or 64 bits in modern day computers.

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Assumptions in a Word RAM model

@ Memory is organized into words of size w.
A word is 32 bits, or 64 bits in modern day computers.

@ If nis the maximum size of the input to the algorithm,
w > log(n)

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Assumptions in a Word RAM model

@ Memory is organized into words of size w.
A word is 32 bits, or 64 bits in modern day computers.

@ If nis the maximum size of the input to the algorithm,
w > log(n)

@ All normal (arithmetical/logical) computations are performed
on a Word and they take O(1) time.

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Assumptions in a Word RAM model

@ Memory is organized into words of size w.
A word is 32 bits, or 64 bits in modern day computers.

@ If nis the maximum size of the input to the algorithm,
w > log(n)

@ All normal (arithmetical/logical) computations are performed
on a Word and they take O(1) time.

@ Words can be accessed Randomly. (Random Access Memory

)-

Saran Neti Counting Inversions

Offline/Online Algorithms
Radix Sort
Word RAM Model of computation

Concepts

Assumptions in a Word RAM model

@ Memory is organized into words of size w.
A word is 32 bits, or 64 bits in modern day computers.

@ If nis the maximum size of the input to the algorithm,
w > log(n)

@ All normal (arithmetical/logical) computations are performed
on a Word and they take O(1) time.

@ Words can be accessed Randomly. (Random Access Memory

)

o Computational Times for many problems can be improved in

this model.
e.g Sorting has been shown to take O(n+/loglogn) time.

Saran Neti Counting Inversions

History
Results The main result

Outline

© Results

@ History

Saran Neti Counting Inversions

History
Results The main result

Recall the Counting Inversion problem

@ We can count the number of Inversions in O(nlogn) time. e.g
using Merge Sort.

Saran Neti Counting Inversions

History
Results The main result

Recall the Counting Inversion problem

@ We can count the number of Inversions in O(nlogn) time. e.g
using Merge Sort.

@ But we don't want the actual inversion pairs, only their count.
Can something better be done?

Saran Neti Counting Inversions

History
Results The main result

Recall the Counting Inversion problem

@ We can count the number of Inversions in O(nlogn) time. e.g
using Merge Sort.

@ But we don't want the actual inversion pairs, only their count.
Can something better be done?

e Counting inversions can be reduced to “Dominance Counting”

problem - how many points does each point dominate?
Use (i,—m(i)) to map from the set 7.

Saran Neti Counting Inversions

History
Results The main result

Recall the Counting Inversion problem

@ We can count the number of Inversions in O(nlogn) time. e.g
using Merge Sort.

@ But we don't want the actual inversion pairs, only their count.
Can something better be done?

e Counting inversions can be reduced to “Dominance Counting”
problem - how many points does each point dominate?
Use (i,—m(i)) to map from the set 7.

@ It has been shown that this can be done in O(nlogn/loglogn)
time. (Dietz's data structure).

Saran Neti Counting Inversions

History
Results The main result

Outline

© Results

@ The main result

Saran Neti Counting Inversions

History
Results The main result

Partition the input

© Partition the input into two - those that begin with 0, and
those that begin with 1

@ For each element that begins with 0, count how many
preceeding elements which start with 1. Add to inversion
count.

© Recursively do this for each of L bits in order.

o If B is the number of words per page, we can do Step 2 in
O(n/B) 1/O operations.
Operating Systems move around memory in terms of pages.
@ So, for inputs L bits long, we need O(nL/B) 1/O operations.

Saran Neti Counting Inversions

History
Results The main result

Handling B elements in constant time

@ Choose a page size such that the number of words in it
B=w/L
In Linux, the standard is 4KB page size. so, on a 64-bit
machine, we can have input upto 36-bit numbers.
Numbers as big as 4503599627370496.

o The running time becomes O(nL/B) = O(nL?/w)

@ For w = logn, we can simulate word operations in constant
time by table lookup.

@ The running time becomes linear if L~ \/logn

@ This word-packing idea is key to speeding up in offline
algorithms, as opposed to online algorithms.

Saran Neti Counting Inversions

History
Results The main result

An O(n+/logn)algorithm

@ How do we solve the original problem with logn bits?

© Consider a trie (prefix tree) of depth (logn)/L over the
alphabet [0...2¢]
Each node is associated with the elements of the permutation
that fall under that node.

@ For a given node in the trie, the first letters after the common
prefix associated with node are L-bit numbers.

© Use the above subroutine to compute the number of inversions
in this sequence. Add to the running count.

@ Recurse into each child of the node.

e Each trie can be built in O(n) time per level by bucketing. For
L =~ \/logn, subroutine costs O(n)

e Since depth is (logn)/L, we get O(n+/logn) time complexity.

Saran Neti Counting Inversions

Summary

e Algorithms have different complexities under different
computational models.

Saran Neti Counting Inversions

Summary

e Algorithms have different complexities under different
computational models.

@ Non standard bounds of time complexity can arise in these
conditions.

Saran Neti Counting Inversions

Summary

e Algorithms have different complexities under different
computational models.

@ Non standard bounds of time complexity can arise in these
conditions.

@ For realistic computational models lookup tables can help
speed up the algorithm if used carefully.

Saran Neti Counting Inversions

	Introduction
	Permutations
	Inversions

	Concepts
	Offline/Online Algorithms
	Radix Sort
	Word RAM Model of computation

	Results
	History
	The main result

	Summary

