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What is a permutation?

Given a set S , a permutation π of S is a set S
′
containing all

elements of S , but in a di�erent order.

e.g. π{1,3,2}= {2,1,3}, π{1,3,2}= {1,2,3} etc
There are n! permutations for a set of n elements.
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What is an Inversion?

The number of inversions in a permutation π is de�ned as the
number of pairs i < j with π(i)> π(j)

e.g. The number of inversions in {1,6,2,9,5}= 3
The actual sorted order is {1,2,5,6,9}
The pair {6,2},{6,5},{9,5} are in the �wrong� order

Inversion is a measure of deviation from a sorted order. We
want to ��ip� the inversion pairs to get the sorted order.

Question - Given a permutation, how do you count the
number of inversions in it ?
i.e How messed up it is from a nice sorted order.
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O�ine/Online algorithms

An online algorithm runs in a serial manner, and produces
output as and when it receives input.

An o�ine algorithm runs after the entire input has been
received. Can O�ine be better than Online?

e.g Canadian Traveller's Problem - Given a graph with some
unreliable (dotted) edges, �nd the shortest path to a
destination. You'll know if an edge is unreliable when you
reach vertex containing the edge.
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Radix Sort - Sorting without comparision

Radix Sort sorts number based on the �radix� or �base�.

e.g Sorting the following base-10 numbers: 170, 045, 075,
090, 002, 024, 802, 066

Sort by Unit's place - 170, 090, 002, 802, 024, 045, 075, 066

Sort by 10s place - 002, 802, 024, 045, 066, 170, 075, 090

Sort by 100s place - 002, 024, 045, 066, 075, 090, 170, 802

For a set of n numbers, L bits each, Radix Sort takes O(nL)
time.

In case of binary representation, L= log2n, and we get the
familiar O(nlogn) time.
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Why Turing Machine?

We don't use Turing Machines in practice...no tapes, symbols
or transition functions, etc.

Practical Computers use Hierarchical Memory organization.
L1 Cache -> L2 Cache -> SRAM -> DRAM -> Hard Disk ->
Tape Storage

Faster memory is more expensive and vice versa.

Can we build a more realistic computational model than a
Turing machine?
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Assumptions in a Word RAM model

Memory is organized into words of size w.
A word is 32 bits, or 64 bits in modern day computers.

If n is the maximum size of the input to the algorithm,
w > log(n)

All normal ( arithmetical/logical ) computations are performed
on a Word and they take O(1) time.

Words can be accessed Randomly. ( Random Access Memory
).

Computational Times for many problems can be improved in
this model.
e.g Sorting has been shown to take O(n

√
loglogn) time.
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Recall the Counting Inversion problem

We can count the number of Inversions in O(nlogn) time. e.g
using Merge Sort.

But we don't want the actual inversion pairs, only their count.
Can something better be done?

Counting inversions can be reduced to �Dominance Counting�
problem - how many points does each point dominate?
Use (i ,−π(i)) to map from the set π.

It has been shown that this can be done in O(nlogn/loglogn)
time. ( Dietz's data structure ).
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Partition the input

1 Partition the input into two - those that begin with 0, and
those that begin with 1

2 For each element that begins with 0, count how many
preceeding elements which start with 1. Add to inversion
count.

3 Recursively do this for each of L bits in order.

If B is the number of words per page, we can do Step 2 in
O(n/B) I/O operations.
Operating Systems move around memory in terms of pages.

So, for inputs L bits long, we need O(nL/B) I/O operations.
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Handling B elements in constant time

Choose a page size such that the number of words in it
B = w/L
In Linux, the standard is 4KB page size. so, on a 64-bit
machine, we can have input upto 36-bit numbers.
Numbers as big as 4503599627370496.

The running time becomes O(nL/B) = O(nL2/w)

For w ≈ logn, we can simulate word operations in constant
time by table lookup.

The running time becomes linear if L≈
√

logn

This word-packing idea is key to speeding up in o�ine
algorithms, as opposed to online algorithms.
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An O(n
√

logn)algorithm

How do we solve the original problem with logn bits?

1 Consider a trie ( pre�x tree ) of depth (logn)/L over the
alphabet [0...2L]
Each node is associated with the elements of the permutation
that fall under that node.

2 For a given node in the trie, the �rst letters after the common
pre�x associated with node are L-bit numbers.

3 Use the above subroutine to compute the number of inversions
in this sequence. Add to the running count.

4 Recurse into each child of the node.

Each trie can be built in O(n) time per level by bucketing. For
L≈

√
logn, subroutine costs O(n)

Since depth is (logn)/L, we get O(n
√

logn) time complexity.
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Algorithms have di�erent complexities under di�erent
computational models.

Non standard bounds of time complexity can arise in these
conditions.

For realistic computational models lookup tables can help
speed up the algorithm if used carefully.
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